BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24086763)

  • 1. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone.
    Li Y; Aparicio C
    PLoS One; 2013; 8(9):e76782. PubMed ID: 24086763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.
    Georgiadis M; Müller R; Schneider P
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering.
    Liu Y; Luo D; Wang T
    Small; 2016 Sep; 12(34):4611-32. PubMed ID: 27322951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue.
    Hang F; Barber AH
    J R Soc Interface; 2011 Apr; 8(57):500-5. PubMed ID: 20961895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of bone-like nanocomposites using multiphosphorylated peptides.
    Sfeir C; Fang PA; Jayaraman T; Raman A; Xiaoyuan Z; Beniash E
    Acta Biomater; 2014 May; 10(5):2241-9. PubMed ID: 24434535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging collagen packing dynamics during mineralization of engineered bone tissue.
    Campi G; Fratini M; Bukreeva I; Ciasca G; Burghammer M; Brun F; Tromba G; Mastrogiacomo M; Cedola A
    Acta Biomater; 2015 Sep; 23():309-316. PubMed ID: 26049151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity.
    Minary-Jolandan M; Yu MF
    Biomacromolecules; 2009 Sep; 10(9):2565-70. PubMed ID: 19694448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.
    Jee SS; Thula TT; Gower LB
    Acta Biomater; 2010 Sep; 6(9):3676-86. PubMed ID: 20359554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrafibrillar Mineralization of Self-Assembled Elastin-Like Recombinamer Fibrils.
    Li Y; Rodriguez-Cabello JC; Aparicio C
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5838-5846. PubMed ID: 28127954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone.
    Duer MJ
    J Magn Reson; 2015 Apr; 253():98-110. PubMed ID: 25797009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.
    Wang W; Elbanna A
    Bone; 2014 Nov; 68():20-31. PubMed ID: 25108082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.