BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24086763)

  • 21. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Biomimetic Model for Mineralization of Type-I Collagen Fibrils.
    Yao S; Xu Y; Shao C; Nudelman F; Sommerdijk NAJM; Tang R
    Methods Mol Biol; 2019; 1944():39-54. PubMed ID: 30840234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels.
    Jiang W; Griffanti G; Tamimi F; McKee MD; Nazhat SN
    J Struct Biol; 2020 Oct; 212(1):107592. PubMed ID: 32736073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials.
    Thula TT; Rodriguez DE; Lee MH; Pendi L; Podschun J; Gower LB
    Acta Biomater; 2011 Aug; 7(8):3158-69. PubMed ID: 21550424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue.
    Liu Y; Thomopoulos S; Chen C; Birman V; Buehler MJ; Genin GM
    J R Soc Interface; 2014 Mar; 11(92):20130835. PubMed ID: 24352669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure analysis of collagen fibril at atomic-level resolution and its implications for intra-fibrillar transport in bone biomineralization.
    Xu Z; Zhao W; Wang Z; Yang Y; Sahai N
    Phys Chem Chem Phys; 2018 Jan; 20(3):1513-1523. PubMed ID: 29260165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles.
    Jäger I; Fratzl P
    Biophys J; 2000 Oct; 79(4):1737-46. PubMed ID: 11023882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse.
    Liu F; Hu K; Al-Qudsy LH; Wu LQ; Wang Z; Xu HY; Yang H; Yang PF
    Acta Biomater; 2022 Oct; 152():345-354. PubMed ID: 36087867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process.
    Olszta MJ; Douglas EP; Gower LB
    Calcif Tissue Int; 2003 May; 72(5):583-91. PubMed ID: 12616327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrafibrillar, bone-mimetic collagen mineralization regulates breast cancer cell adhesion and migration.
    Choi S; Friedrichs J; Song YH; Werner C; Estroff LA; Fischbach C
    Biomaterials; 2019 Apr; 198():95-106. PubMed ID: 29759731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1-10-microm scale.
    Hellmich C; Ulm FJ
    Biomech Model Mechanobiol; 2003 Aug; 2(1):21-36. PubMed ID: 14586815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties of nacre and highly mineralized bone.
    Currey JD; Zioupos P; Davies P; Casino A
    Proc Biol Sci; 2001 Jan; 268(1462):107-11. PubMed ID: 12123292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Biomimetic Scaffolds with Both Intrafibrillar and Extrafibrillar Mineralization.
    Hu C; Zhang L; Wei M
    ACS Biomater Sci Eng; 2015 Aug; 1(8):669-676. PubMed ID: 33435090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinspired Collagen-Apatite Nanocomposites for Bone Regeneration.
    Liu S; Sun Y; Fu Y; Chang D; Fu C; Wang G; Liu Y; Tay FR; Zhou Y
    J Endod; 2016 Aug; 42(8):1226-32. PubMed ID: 27377439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspects of collagen mineralization in hard tissue formation.
    Wiesmann HP; Meyer U; Plate U; Höhling HJ
    Int Rev Cytol; 2005; 242():121-56. PubMed ID: 15598468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.