These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 24087834)
1. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation. Gaffney EA; Lee SS Math Med Biol; 2015 Mar; 32(1):56-78. PubMed ID: 24087834 [TBL] [Abstract][Full Text] [Related]
2. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Seirin Lee S; Gaffney EA; Baker RE Bull Math Biol; 2011 Nov; 73(11):2527-51. PubMed ID: 21347815 [TBL] [Abstract][Full Text] [Related]
3. On the orientation of stripes in fish skin patterning. Míguez DG; Muñuzuri AP Biophys Chem; 2006 Nov; 124(2):161-7. PubMed ID: 16844282 [TBL] [Abstract][Full Text] [Related]
4. Is pigment patterning in fish skin determined by the Turing mechanism? Watanabe M; Kondo S Trends Genet; 2015 Feb; 31(2):88-96. PubMed ID: 25544713 [TBL] [Abstract][Full Text] [Related]
5. Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays. Seirin Lee S; Gaffney EA Bull Math Biol; 2010 Nov; 72(8):2161-79. PubMed ID: 20309644 [TBL] [Abstract][Full Text] [Related]
8. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Mahalwar P; Walderich B; Singh AP; Nüsslein-Volhard C Science; 2014 Sep; 345(6202):1362-4. PubMed ID: 25214630 [TBL] [Abstract][Full Text] [Related]
9. In silico zebrafish pattern formation. Caicedo-Carvajal CE; Shinbrot T Dev Biol; 2008 Mar; 315(2):397-403. PubMed ID: 18272146 [TBL] [Abstract][Full Text] [Related]
10. How animals get their skin patterns: fish pigment pattern as a live Turing wave. Kondo S; Iwashita M; Yamaguchi M Int J Dev Biol; 2009; 53(5-6):851-6. PubMed ID: 19557690 [TBL] [Abstract][Full Text] [Related]
11. Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. Liu RT; Liaw SS; Maini PK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011914. PubMed ID: 16907134 [TBL] [Abstract][Full Text] [Related]
12. Influence of survival, promotion, and growth on pattern formation in zebrafish skin. Konow C; Li Z; Shepherd S; Bullara D; Epstein IR Sci Rep; 2021 May; 11(1):9864. PubMed ID: 33972585 [TBL] [Abstract][Full Text] [Related]
13. Homology and the evolution of novelty during Danio adult pigment pattern development. Parichy DM J Exp Zool B Mol Dev Evol; 2007 Sep; 308(5):578-90. PubMed ID: 17094081 [TBL] [Abstract][Full Text] [Related]
15. Fish pigmentation. Response to Comment on "Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish". Singh AP; Frohnhöfer HG; Irion U; Nüsslein-Volhard C Science; 2015 Apr; 348(6232):297. PubMed ID: 25883351 [TBL] [Abstract][Full Text] [Related]
16. Melanophores in the stripes of adult zebrafish do not have the nature to gather, but disperse when they have the space to move. Takahashi G; Kondo S Pigment Cell Melanoma Res; 2008 Dec; 21(6):677-86. PubMed ID: 19067972 [TBL] [Abstract][Full Text] [Related]
17. Fish pigmentation. Comment on "Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish". Watanabe M; Kondo S Science; 2015 Apr; 348(6232):297. PubMed ID: 25883350 [TBL] [Abstract][Full Text] [Related]
18. Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis. Painter KJ; Maini PK; Othmer HG Proc Natl Acad Sci U S A; 1999 May; 96(10):5549-54. PubMed ID: 10318921 [TBL] [Abstract][Full Text] [Related]