BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24087907)

  • 1. Bayesian-based ensemble source apportionment of PM2.5.
    Balachandran S; Chang HH; Pachon JE; Holmes HA; Mulholland JA; Russell AG
    Environ Sci Technol; 2013; 47(23):13511-8. PubMed ID: 24087907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of an ensemble-trained source apportionment approach at a site impacted by multiple point sources.
    Maier ML; Balachandran S; Sarnat SE; Turner JR; Mulholland JA; Russell AG
    Environ Sci Technol; 2013 Apr; 47(8):3743-51. PubMed ID: 23441641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble-trained PM2.5 source apportionment approach for health studies.
    Lee D; Balachandran S; Pachon J; Shankaran R; Lee S; Mulholland JA; Russell AG
    Environ Sci Technol; 2009 Sep; 43(18):7023-31. PubMed ID: 19806737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source apportionment of PM
    Skiles MJ; Lai AM; Olson MR; Schauer JJ; de Foy B
    Environ Pollut; 2018 Jun; 237():366-376. PubMed ID: 29501999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source apportionment of fine particulate matter in the southeastern United States.
    Lee S; Russell AG; Baumann K
    J Air Waste Manag Assoc; 2007 Sep; 57(9):1123-35. PubMed ID: 17912931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models.
    Shi G; Liu J; Wang H; Tian Y; Wen J; Shi X; Feng Y; Ivey CE; Russell AG
    Environ Pollut; 2018 Feb; 233():1058-1067. PubMed ID: 29033173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of local and external contributions of biomass burning to PM
    Benetello F; Squizzato S; Hofer A; Masiol M; Khan MB; Piazzalunga A; Fermo P; Formenton GM; Rampazzo G; Pavoni B
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):2100-2115. PubMed ID: 27812966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source-Apportioned PM2.5 and Cardiorespiratory Emergency Department Visits: Accounting for Source Contribution Uncertainty.
    Pennington AF; Strickland MJ; Gass K; Klein M; Sarnat SE; Tolbert PE; Balachandran S; Chang HH; Russell AG; Mulholland JA; Darrow LA
    Epidemiology; 2019 Nov; 30(6):789-798. PubMed ID: 31469699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble-based source apportionment of fine particulate matter and emergency department visits for pediatric asthma.
    Gass K; Balachandran S; Chang HH; Russell AG; Strickland MJ
    Am J Epidemiol; 2015 Apr; 181(7):504-12. PubMed ID: 25776011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study.
    Watson JG; Chow JC; Lowenthal DH; Antony Chen LW; Shaw S; Edgerton ES; Blanchard CL
    J Air Waste Manag Assoc; 2015 Sep; 65(9):1104-18. PubMed ID: 26102211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine particulates over South Asia: Review and meta-analysis of PM
    Singh N; Murari V; Kumar M; Barman SC; Banerjee T
    Environ Pollut; 2017 Apr; 223():121-136. PubMed ID: 28063711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative potential of ambient PM
    Liu W; Xu Y; Liu W; Liu Q; Yu S; Liu Y; Wang X; Tao S
    Environ Pollut; 2018 May; 236():514-528. PubMed ID: 29428706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of source apportionment results to mobile source profiles.
    Cai T; Schauer JJ; Huang W; Fang D; Shang J; Wang Y; Zhang Y
    Environ Pollut; 2016 Dec; 219():821-828. PubMed ID: 27567169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modelling.
    Perrone MG; Larsen BR; Ferrero L; Sangiorgi G; De Gennaro G; Udisti R; Zangrando R; Gambaro A; Bolzacchini E
    Sci Total Environ; 2012 Jan; 414():343-55. PubMed ID: 22155277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source apportionment of PM
    Ryou HG; Heo J; Kim SY
    Environ Pollut; 2018 Sep; 240():963-972. PubMed ID: 29910064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal variation of chemical composition and source apportionment of PM
    Gawhane RD; Rao PSP; Budhavant KB; Waghmare V; Meshram DC; Safai PD
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21065-21072. PubMed ID: 28730356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.
    Villalobos AM; Barraza F; Jorquera H; Schauer JJ
    Sci Total Environ; 2015 Apr; 512-513():133-142. PubMed ID: 25617780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the health impacts of particulate matter characteristics.
    Bell ML;
    Res Rep Health Eff Inst; 2012 Jan; (161):5-38. PubMed ID: 22393584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.