These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24087907)

  • 61. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.
    de Miranda RM; Lopes F; do Rosário NÉ; Yamasoe MA; Landulfo E; de Fatima Andrade M
    Environ Monit Assess; 2016 Dec; 189(1):6. PubMed ID: 27921226
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method.
    Yang HH; Luo SW; Lee KT; Wu JY; Chang CW; Chu PF
    J Air Waste Manag Assoc; 2016 Aug; 66(8):807-14. PubMed ID: 27366931
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Aerosol particulate matter in the Baltimore metropolitan area: Temporal variation over a six-year period.
    Orozco D; Delgado R; Wesloh D; Powers RJ; Hoff R
    J Air Waste Manag Assoc; 2015 Sep; 65(9):1050-61. PubMed ID: 26151163
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sources apportionment of PM2.5 in a background site in the North China Plain.
    Yao L; Yang L; Yuan Q; Yan C; Dong C; Meng C; Sui X; Yang F; Lu Y; Wang W
    Sci Total Environ; 2016 Jan; 541():590-598. PubMed ID: 26433327
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Source apportionment of PM2.5 for supporting control strategies in the Monterrey Metropolitan Area, Mexico.
    Martínez-Cinco M; Santos-Guzmán J; Mejía-Velázquez G
    J Air Waste Manag Assoc; 2016 Jun; 66(6):631-42. PubMed ID: 26950193
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Workgroup report: workshop on source apportionment of particulate matter health effects--intercomparison of results and implications.
    Thurston GD; Ito K; Mar T; Christensen WF; Eatough DJ; Henry RC; Kim E; Laden F; Lall R; Larson TV; Liu H; Neas L; Pinto J; Stölzel M; Suh H; Hopke PK
    Environ Health Perspect; 2005 Dec; 113(12):1768-74. PubMed ID: 16330361
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Source profiles and contributions of biofuel combustion for PM
    Tian YZ; Chen JB; Zhang LL; Du X; Wei JJ; Fan H; Xu J; Wang HT; Guan L; Shi GL; Feng YC
    Chemosphere; 2017 Dec; 189():255-264. PubMed ID: 28942251
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Estimation of residential fine particulate matter infiltration in Shanghai, China.
    Zhou X; Cai J; Zhao Y; Chen R; Wang C; Zhao A; Yang C; Li H; Liu S; Cao J; Kan H; Xu H
    Environ Pollut; 2018 Feb; 233():494-500. PubMed ID: 29102879
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Source apportionment: findings from the U.S. Supersites Program.
    Watson JG; Chen LW; Chow JC; Doraiswamy P; Lowenthal DH
    J Air Waste Manag Assoc; 2008 Feb; 58(2):265-88. PubMed ID: 18318341
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Review of online source apportionment research based on observation for ambient particulate matter.
    Wang F; Yu H; Wang Z; Liang W; Shi G; Gao J; Li M; Feng Y
    Sci Total Environ; 2021 Mar; 762():144095. PubMed ID: 33360453
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.
    Bal G; Rivot E; Baglinière JL; White J; Prévost E
    PLoS One; 2014; 9(12):e115659. PubMed ID: 25541732
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bayesian source reconstruction of an anomalous Selenium-75 release at a nuclear research institute.
    De Meutter P; Hoffman I
    J Environ Radioact; 2020 Jul; 218():106225. PubMed ID: 32174444
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Bayesian approach to health project estimation.
    Chasse JD
    Am J Public Health; 1976 Aug; 66(8):747-54. PubMed ID: 961942
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Probabilistic inversion for submerged source depth and strength from infrasound observations.
    Averbuch G; Waxler RM; Smets PSM; Evers LG
    J Acoust Soc Am; 2020 Feb; 147(2):1066. PubMed ID: 32113259
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Estimating reaction parameters in mechanism-enabled population balance models of nanoparticle size distributions: A Bayesian inverse problem approach.
    Long DK; Bangerth W; Handwerk DR; Whitehead CB; Shipman PD; Finke RG
    J Comput Chem; 2022 Jan; 43(1):43-56. PubMed ID: 34672375
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reassessment of Resuspension Factor Following Radionuclide Dispersal: Toward a General-purpose Rate Constant.
    Marshall S; Potter C; Medich D
    Health Phys; 2018 May; 114(5):500-506. PubMed ID: 29578898
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Corrigendum to "A Bayesian ensemble approach to combine PM
    Murray NL; Holmes HA; Liu Y; Chang HH
    Environ Res; 2020 Apr; 183():108952. PubMed ID: 31818477
    [No Abstract]   [Full Text] [Related]  

  • 78. [Comment on Sensitivity Analysis Methods for Environmental Models].
    Chen WP; Tu HZ; Peng C; Hou Y
    Huan Jing Ke Xue; 2017 Nov; 38(11):4889-4897. PubMed ID: 29965437
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Source-specific contributions of particulate matter to asthma-related pediatric emergency department utilization.
    Bhuiyan MAN; Ryan P; Oroumyeh F; Jathan Y; Roy M; Balachandran S; Brokamp C
    Health Inf Sci Syst; 2021 Dec; 9(1):12. PubMed ID: 33786161
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Global review of recent source apportionments for airborne particulate matter.
    Hopke PK; Dai Q; Li L; Feng Y
    Sci Total Environ; 2020 Oct; 740():140091. PubMed ID: 32559544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.