These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 24088046)
1. Arsenite binding to natural organic matter: spectroscopic evidence for ligand exchange and ternary complex formation. Hoffmann M; Mikutta C; Kretzschmar R Environ Sci Technol; 2013; 47(21):12165-73. PubMed ID: 24088046 [TBL] [Abstract][Full Text] [Related]
2. Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy. Hoffmann M; Mikutta C; Kretzschmar R Environ Sci Technol; 2012 Nov; 46(21):11788-97. PubMed ID: 23075303 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Mikutta C; Kretzschmar R Environ Sci Technol; 2011 Nov; 45(22):9550-7. PubMed ID: 21985502 [TBL] [Abstract][Full Text] [Related]
4. Spatial distribution and speciation of arsenic in peat studied with Microfocused X-ray fluorescence spectrometry and X-ray absorption spectroscopy. Langner P; Mikutta C; Suess E; Marcus MA; Kretzschmar R Environ Sci Technol; 2013 Sep; 47(17):9706-14. PubMed ID: 23889036 [TBL] [Abstract][Full Text] [Related]
5. Characterization of iron(III) in organic soils using extended X-ray absorption fine structure spectroscopy. Karlsson T; Persson P; Skyllberg U; Mörth CM; Giesler R Environ Sci Technol; 2008 Aug; 42(15):5449-54. PubMed ID: 18754459 [TBL] [Abstract][Full Text] [Related]
6. Antimonite Complexation with Thiol and Carboxyl/Phenol Groups of Peat Organic Matter. Besold J; Kumar N; Scheinost AC; Lezama Pacheco J; Fendorf S; Planer-Friedrich B Environ Sci Technol; 2019 May; 53(9):5005-5015. PubMed ID: 30973221 [TBL] [Abstract][Full Text] [Related]
7. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Chen C; Dynes JJ; Wang J; Sparks DL Environ Sci Technol; 2014 Dec; 48(23):13751-9. PubMed ID: 25350793 [TBL] [Abstract][Full Text] [Related]
8. Arsenite binding to sulfhydryl groups in the absence and presence of ferrihydrite: a model study. Hoffmann M; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Apr; 48(7):3822-31. PubMed ID: 24564801 [TBL] [Abstract][Full Text] [Related]
9. Iron and arsenic speciation and distribution in organic flocs from streambeds of an arsenic-enriched peatland. ThomasArrigo LK; Mikutta C; Byrne J; Barmettler K; Kappler A; Kretzschmar R Environ Sci Technol; 2014 Nov; 48(22):13218-28. PubMed ID: 25347614 [TBL] [Abstract][Full Text] [Related]
10. Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES study. Wang Y; Morin G; Ona-Nguema G; Juillot F; Guyot F; Calas G; Brown GE Environ Sci Technol; 2010 Jan; 44(1):109-15. PubMed ID: 20039740 [TBL] [Abstract][Full Text] [Related]
11. Chromium(III) complexation to natural organic matter: mechanisms and modeling. Gustafsson JP; Persson I; Oromieh AG; van Schaik JW; Sjöstedt C; Kleja DB Environ Sci Technol; 2014; 48(3):1753-61. PubMed ID: 24422446 [TBL] [Abstract][Full Text] [Related]
12. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
13. Equilibria, kinetics, and spectroscopic analyses on the uptake of aqueous arsenite by two-line ferrihydrite. Kim SO; Lee WC; Cho HG; Lee BT; Lee PK; Choi SH Environ Technol; 2014; 35(1-4):251-61. PubMed ID: 24600863 [TBL] [Abstract][Full Text] [Related]
15. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229 [TBL] [Abstract][Full Text] [Related]
16. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Chen J; Gu B; Royer RA; Burgos WD Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432 [TBL] [Abstract][Full Text] [Related]
17. Antimonite Binding to Natural Organic Matter: Spectroscopic Evidence from a Mine Water Impacted Peatland. Besold J; Eberle A; Noël V; Kujala K; Kumar N; Scheinost AC; Pacheco JL; Fendorf S; Planer-Friedrich B Environ Sci Technol; 2019 Sep; 53(18):10792-10802. PubMed ID: 31436960 [TBL] [Abstract][Full Text] [Related]
18. Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms. Strautmann JB; Freiherr von Richthofen CG; Heinze-Brückner G; DeBeer S; Bothe E; Bill E; Weyhermüller T; Stammler A; Bögge H; Glaser T Inorg Chem; 2011 Jan; 50(1):155-71. PubMed ID: 21114259 [TBL] [Abstract][Full Text] [Related]
19. Effects of natural organic matter on the coprecipitation of arsenic with iron. Kim EJ; Hwang BR; Baek K Environ Geochem Health; 2015 Dec; 37(6):1029-39. PubMed ID: 25754698 [TBL] [Abstract][Full Text] [Related]
20. Adsorption/desorption of arsenic by tropical peat: influence of organic matter, iron and aluminium. de Oliveira LK; Melo CA; Goveia D; Lobo FA; Armienta Hernández MA; Fraceto LF; Rosa AH Environ Technol; 2015; 36(1-4):149-59. PubMed ID: 25413109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]