These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24088058)

  • 41. Geometric self-sorting in DNA self-assembly.
    He Y; Tian Y; Chen Y; Ribbe AE; Mao C
    Chem Commun (Camb); 2007 Jan; (2):165-7. PubMed ID: 17180234
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-assembly of metal-DNA triangles and DNA nanotubes with synthetic junctions.
    Yang H; Lo PK; McLaughlin CK; Hamblin GD; Aldaye FA; Sleiman HF
    Methods Mol Biol; 2011; 749():33-47. PubMed ID: 21674363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure.
    Endo M; Katsuda Y; Hidaka K; Sugiyama H
    J Am Chem Soc; 2010 Feb; 132(5):1592-7. PubMed ID: 20078043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new triple crossover triangle (TXT) motif for DNA self-assembly.
    Wei B; Mi Y
    Biomacromolecules; 2005; 6(5):2528-32. PubMed ID: 16153089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of tunable external stimuli on the self-assembly of guanosine supramolecular nanostructures studied by atomic force microscope.
    Li Y; Dong M; Otzen DE; Yao Y; Liu B; Besenbacher F; Mamdouh W
    Langmuir; 2009 Dec; 25(23):13432-7. PubMed ID: 19499943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chapter 13 - Soft hybrid nanostructures composed of phospholipid liposomes decorated with oligonucleotides.
    Banchelli M; Bombelli FB; Berti D; Baglioni P
    Methods Enzymol; 2009; 464():249-77. PubMed ID: 19903559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Substrate-assisted assembly of interconnected single-duplex DNA nanostructures.
    Hamada S; Murata S
    Angew Chem Int Ed Engl; 2009; 48(37):6820-3. PubMed ID: 19688799
    [No Abstract]   [Full Text] [Related]  

  • 48. An AFM investigation of oligonucleotides anchored on unoxidized crystalline silicon surfaces.
    Longo G; Girasole M; Pompeo G; Cricenti A; Andreano G; Cattaruzza F; Cellai L; Flamini A; Guarino C; Prosperi T
    Biomol Eng; 2007 Feb; 24(1):53-8. PubMed ID: 16815743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.
    Holland JG; Geiger FM
    J Phys Chem B; 2012 Jun; 116(22):6302-10. PubMed ID: 22571519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic force microscopy in biomaterials surface science.
    Variola F
    Phys Chem Chem Phys; 2015 Feb; 17(5):2950-9. PubMed ID: 25523021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing tethered targets of a single biomolecular complex with atomic force microscopy.
    Wu N; Wang Q; Zhou X; Jia SS; Fan Y; Hu J; Li B
    J Mol Recognit; 2013 Dec; 26(12):700-4. PubMed ID: 24277616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals.
    Shen W; Liu Q; Ding B; Shen Z; Zhu C; Mao C
    Org Biomol Chem; 2016 Jul; 14(30):7187-90. PubMed ID: 27404049
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization and modulation of the hierarchical self-assembly of nanostructured DNA tiles into supramolecular polymers.
    Brucale M; Zuccheri G; Rossi L; Bazzani A; Castellani G; Samorì B
    Org Biomol Chem; 2006 Sep; 4(18):3427-34. PubMed ID: 17036136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA dumbbell tiles with uneven widths for 2D arrays.
    Ali M; Afshan N; Jiang C; Xiao SJ
    Org Biomol Chem; 2019 Jan; 17(5):1277-1283. PubMed ID: 30663748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double-Crossover Tiles.
    De Stefano M; Vesterager Gothelf K
    Chembiochem; 2016 Jun; 17(12):1122-6. PubMed ID: 26994867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure.
    Sannohe Y; Endo M; Katsuda Y; Hidaka K; Sugiyama H
    J Am Chem Soc; 2010 Nov; 132(46):16311-3. PubMed ID: 21028867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Backbone-branched DNA building blocks for facile angular control in nanostructures.
    Paredes E; Zhang X; Ghodke H; Yadavalli VK; Das SR
    ACS Nano; 2013 May; 7(5):3953-61. PubMed ID: 23600590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Triplex-directed recognition of a DNA nanostructure assembled by crossover strand exchange.
    Rusling DA; Nandhakumar IS; Brown T; Fox KR
    ACS Nano; 2012 Apr; 6(4):3604-13. PubMed ID: 22443318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The tube or the helix? This is the question: towards the fully controlled DNA-directed assembly of carbon nanotubes.
    Zuccheri G; Brucale M; Samorì B
    Small; 2005 Jun; 1(6):590-2. PubMed ID: 17193491
    [No Abstract]   [Full Text] [Related]  

  • 60. Simple one-step growth and parallel alignment of DNA nanofibers via solvent vapor-induced buildup.
    Nakao H; Taguchi T; Shiigi H; Miki K
    Chem Commun (Camb); 2009 Apr; (14):1858-60. PubMed ID: 19319425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.