BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24088084)

  • 1. An experimental and theoretical investigation of the inversion of pd@pt core@shell dendrimer-encapsulated nanoparticles.
    Anderson RM; Zhang L; Loussaert JA; Frenkel AI; Henkelman G; Crooks RM
    ACS Nano; 2013 Oct; 7(10):9345-53. PubMed ID: 24088084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles.
    Weir MG; Knecht MR; Frenkel AI; Crooks RM
    Langmuir; 2010 Jan; 26(2):1137-46. PubMed ID: 19839631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition.
    Carino EV; Crooks RM
    Langmuir; 2011 Apr; 27(7):4227-35. PubMed ID: 21384847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
    Luo L; Zhang L; Henkelman G; Crooks RM
    J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-selective Cu deposition on Pt dendrimer-encapsulated nanoparticles: correlation of theory and experiment.
    Carino EV; Kim HY; Henkelman G; Crooks RM
    J Am Chem Soc; 2012 Mar; 134(9):4153-62. PubMed ID: 22356476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ structural characterization of platinum dendrimer-encapsulated oxygen reduction electrocatalysts.
    Myers VS; Frenkel AI; Crooks RM
    Langmuir; 2012 Jan; 28(2):1596-603. PubMed ID: 22221003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles.
    Wilson OM; Scott RW; Garcia-Martinez JC; Crooks RM
    J Am Chem Soc; 2005 Jan; 127(3):1015-24. PubMed ID: 15656640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles.
    Yancey DF; Carino EV; Crooks RM
    J Am Chem Soc; 2010 Aug; 132(32):10988-9. PubMed ID: 20698651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.
    Miyakawa M; Hiyoshi N; Nishioka M; Koda H; Sato K; Miyazawa A; Suzuki TM
    Nanoscale; 2014 Aug; 6(15):8720-5. PubMed ID: 24948122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short range order in bimetallic nanoalloys: an extended X-ray absorption fine structure study.
    Frenkel AI; Wang Q; Sanchez SI; Small MW; Nuzzo RG
    J Chem Phys; 2013 Feb; 138(6):064202. PubMed ID: 23425464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EXAFS characterization of dendrimer-Pt nanocomposites used for the preparation of Pt/gamma-Al2O3 catalysts.
    Alexeev OS; Siani A; Lafaye G; Williams CT; Ploehn HJ; Amiridis MD
    J Phys Chem B; 2006 Dec; 110(49):24903-14. PubMed ID: 17149911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions.
    Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA
    J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.
    Tao F; Grass ME; Zhang Y; Butcher DR; Renzas JR; Liu Z; Chung JY; Mun BS; Salmeron M; Somorjai GA
    Science; 2008 Nov; 322(5903):932-4. PubMed ID: 18845713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction.
    Teng X; Wang Q; Liu P; Han W; Frenkel AI; Wen W; Marinkovic N; Hanson JC; Rodriguez JA
    J Am Chem Soc; 2008 Jan; 130(3):1093-101. PubMed ID: 18161978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electronic effects of carbon-supported Pt(x)Pd(1-x) nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance.
    Chang SH; Su WN; Yeh MH; Pan CJ; Yu KL; Liu DG; Lee JF; Hwang BJ
    Chemistry; 2010 Sep; 16(36):11064-71. PubMed ID: 20690117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.