These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Jorge I; Navarro RM; Lenz C; Ariza D; Jorrín J Proteomics; 2006 Apr; 6 Suppl 1():S207-14. PubMed ID: 16534744 [TBL] [Abstract][Full Text] [Related]
5. Proteotyping of Holm oak (Quercus ilex subsp. ballota) provenances through proteomic analysis of acorn flour. Galván JV; Fernández RG; Valledor L; Cerrillo RM; Jorrin-Novo JV Methods Mol Biol; 2014; 1072():709-23. PubMed ID: 24136558 [TBL] [Abstract][Full Text] [Related]
6. Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. Valero Galván J; Valledor L; Navarro Cerrillo RM; Gil Pelegrín E; Jorrín-Novo JV J Proteomics; 2011 Aug; 74(8):1244-55. PubMed ID: 21605712 [TBL] [Abstract][Full Text] [Related]
7. Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery. Echevarría-Zomeño S; Ariza D; Jorge I; Lenz C; Del Campo A; Jorrín JV; Navarro RM J Plant Physiol; 2009 Feb; 166(3):233-45. PubMed ID: 18778874 [TBL] [Abstract][Full Text] [Related]
8. Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity. Alonso R; Elvira S; González-Fernández I; Calvete H; García-Gómez H; Bermejo V Plant Biol (Stuttg); 2014 Mar; 16(2):375-84. PubMed ID: 23890191 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type. Hu B; Simon J; Kuster TM; Arend M; Siegwolf R; Rennenberg H Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():198-209. PubMed ID: 22934888 [TBL] [Abstract][Full Text] [Related]
10. 2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage. Simova-Stoilova LP; Romero-Rodríguez MC; Sánchez-Lucas R; Navarro-Cerrillo RM; Medina-Aunon JA; Jorrín-Novo JV Front Plant Sci; 2015; 6():627. PubMed ID: 26322068 [TBL] [Abstract][Full Text] [Related]
11. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
12. Proteomics Data Analysis for the Identification of Proteins and Derived Proteotypic Peptides of Potential Use as Putative Drought Tolerance Markers for San-Eufrasio B; Bigatton ED; Guerrero-Sánchez VM; Chaturvedi P; Jorrín-Novo JV; Rey MD; Castillejo MÁ Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33800973 [TBL] [Abstract][Full Text] [Related]
13. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon. Zhao Y; Du H; Wang Z; Huang B Physiol Plant; 2011 Jan; 141(1):40-55. PubMed ID: 21029106 [TBL] [Abstract][Full Text] [Related]
14. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Xiao X; Yang F; Zhang S; Korpelainen H; Li C Physiol Plant; 2009 Jun; 136(2):150-68. PubMed ID: 19453505 [TBL] [Abstract][Full Text] [Related]
15. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Kang G; Li G; Xu W; Peng X; Han Q; Zhu Y; Guo T J Proteome Res; 2012 Dec; 11(12):6066-79. PubMed ID: 23101459 [TBL] [Abstract][Full Text] [Related]
16. Holm oak proteomic response to water limitation at seedling establishment stage reveals specific changes in different plant parts as well as interaction between roots and cotyledons. Simova-Stoilova LP; López-Hidalgo C; Sanchez-Lucas R; Valero-Galvan J; Romero-Rodríguez C; Jorrin-Novo JV Plant Sci; 2018 Nov; 276():1-13. PubMed ID: 30348307 [TBL] [Abstract][Full Text] [Related]
17. Inter- and intra-specific variability in isoprene production and photosynthesis of Central European oak species. Steinbrecher R; Contran N; Gugerli F; Schnitzler JP; Zimmer I; Menard T; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():148-56. PubMed ID: 23279295 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. Li G; Peng X; Xuan H; Wei L; Yang Y; Guo T; Kang G J Proteome Res; 2013 Nov; 12(11):4846-61. PubMed ID: 24074260 [TBL] [Abstract][Full Text] [Related]
19. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Li MH; Cherubini P; Dobbertin M; Arend M; Xiao WF; Rigling A Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():177-84. PubMed ID: 22583546 [TBL] [Abstract][Full Text] [Related]
20. Foliage response of young central European oaks to air warming, drought and soil type. Günthardt-Goerg MS; Kuster TM; Arend M; Vollenweider P Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():185-97. PubMed ID: 23009690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]