BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24088365)

  • 1. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley.
    Peukert M; Weise S; Röder MS; Matthies IE
    BMC Genet; 2013 Oct; 14():97. PubMed ID: 24088365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.
    Hoang VL; Innes DJ; Shaw PN; Monteith GR; Gidley MJ; Dietzgen RG
    BMC Genomics; 2015 Jul; 16(1):561. PubMed ID: 26220670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-metabolism related genes in barley - haplotype diversity, linkage mapping and associations with malting and kernel quality parameters.
    Matthies IE; Weise S; Förster J; Korzun V; Stein N; Röder MS
    BMC Genet; 2013 Sep; 14():77. PubMed ID: 24007272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of genes encoding chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra.
    Beritognolo I; Magel E; Abdel-Latif A; Charpentier JP; Jay-Allemand C; Breton C
    Tree Physiol; 2002 Apr; 22(5):291-300. PubMed ID: 11960753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties.
    Kaundun SS; Matsumoto S
    Theor Appl Genet; 2003 Feb; 106(3):375-83. PubMed ID: 12589537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression genetics and haplotype analysis reveal cis regulation of serine carboxypeptidase I (Cxp1), a candidate gene for malting quality in barley (Hordeum vulgare L.).
    Potokina E; Prasad M; Malysheva L; Röder MS; Graner A
    Funct Integr Genomics; 2006 Jan; 6(1):25-35. PubMed ID: 16283224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits.
    Haseneyer G; Stracke S; Piepho HP; Sauer S; Geiger HH; Graner A
    BMC Plant Biol; 2010 Jan; 10():5. PubMed ID: 20064201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis.
    Achnine L; Blancaflor EB; Rasmussen S; Dixon RA
    Plant Cell; 2004 Nov; 16(11):3098-109. PubMed ID: 15472080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salicylic acid-induced changes in physiological parameters and genes of the flavonoid biosynthesis pathway in Artemisia vulgaris and Dendranthema nankingense during aphid feeding.
    Sun Y; Xia XL; Jiang JF; Chen SM; Chen FD; Lv GS
    Genet Mol Res; 2016 Feb; 15(1):. PubMed ID: 26909993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.
    Cheniany M; Ganjeali A
    Acta Biol Hung; 2016 Dec; 67(4):379-392. PubMed ID: 28000512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalanine ammonia lyase functions as a switch directly controlling the accumulation of calycosin and calycosin-7-O-beta-D-glucoside in Astragalus membranaceus var. mongholicus plants.
    Pan H; Wang Y; Zhang Y; Zhou T; Fang C; Nan P; Wang X; Li X; Wei Y; Chen J
    J Exp Bot; 2008; 59(11):3027-37. PubMed ID: 18583351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum).
    Li X; Park NI; Xu H; Woo SH; Park CH; Park SU
    J Agric Food Chem; 2010 Dec; 58(23):12176-81. PubMed ID: 21062042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new allele of acid soil tolerance gene from a malting barley variety.
    Bian M; Jin X; Broughton S; Zhang XQ; Zhou G; Zhou M; Zhang G; Sun D; Li C
    BMC Genet; 2015 Jul; 16():92. PubMed ID: 26219378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement.
    Johnston PA; Timmerman-Vaughan GM; Farnden KJ; Pickering R
    Theor Appl Genet; 2009 May; 118(8):1429-37. PubMed ID: 19263032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley.
    Sato K; Close TJ; Bhat P; Muñoz-Amatriaín M; Muehlbauer GJ
    Plant Cell Physiol; 2011 May; 52(5):728-37. PubMed ID: 21427110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase and pyranocoumarin biosynthesis in Angelica gigas.
    Park JH; Park NI; Xu H; Park SU
    J Nat Prod; 2010 Aug; 73(8):1394-7. PubMed ID: 20701298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haplotype diversity and population structure in cultivated and wild barley evaluated for Fusarium head blight responses.
    Huang Y; Millett BP; Beaubien KA; Dahl SK; Steffenson BJ; Smith KP; Muehlbauer GJ
    Theor Appl Genet; 2013 Mar; 126(3):619-36. PubMed ID: 23124391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster.
    Hwang EI; Kaneko M; Ohnishi Y; Horinouchi S
    Appl Environ Microbiol; 2003 May; 69(5):2699-706. PubMed ID: 12732539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unlocking the secondary gene-pool of barley with next-generation sequencing.
    Wendler N; Mascher M; Nöh C; Himmelbach A; Scholz U; Ruge-Wehling B; Stein N
    Plant Biotechnol J; 2014 Oct; 12(8):1122-31. PubMed ID: 25040223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs.
    Mahroug S; Courdavault V; Thiersault M; St-Pierre B; Burlat V
    Planta; 2006 May; 223(6):1191-200. PubMed ID: 16322983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.