BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 24088388)

  • 1. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States.
    Cai H; Dunn JB; Wang Z; Han J; Wang MQ
    Biotechnol Biofuels; 2013 Oct; 6(1):141. PubMed ID: 24088388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.
    Wang Z; Dunn JB; Han J; Wang MQ
    Biotechnol Biofuels; 2015; 8():178. PubMed ID: 26543502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changing the renewable fuel standard to a renewable material standard: bioethylene case study.
    Posen ID; Griffin WM; Matthews HS; Azevedo IL
    Environ Sci Technol; 2015 Jan; 49(1):93-102. PubMed ID: 25478782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol.
    Dunn JB; Mueller S; Kwon HY; Wang MQ
    Biotechnol Biofuels; 2013 Apr; 6(1):51. PubMed ID: 23575438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
    Han J; Tao L; Wang M
    Biotechnol Biofuels; 2017; 10():21. PubMed ID: 28138339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated Biomass Sorghum GHG Reduction Potential is Similar to Maize.
    Kent J; Hartman MD; Lee DK; Hudiburg T
    Environ Sci Technol; 2020 Oct; 54(19):12456-12466. PubMed ID: 32856896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.
    Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ
    Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.
    Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R
    J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life Cycle Analysis of Electrofuels: Fischer-Tropsch Fuel Production from Hydrogen and Corn Ethanol Byproduct CO
    Zang G; Sun P; Elgowainy A; Bafana A; Wang M
    Environ Sci Technol; 2021 Mar; 55(6):3888-3897. PubMed ID: 33661618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life Cycle Analysis of Fischer-Tropsch Diesel Produced by Tri-Reforming and Fischer-Tropsch Synthesis (TriFTS) of Landfill Gas.
    Poddar TK; Zaimes GG; Kar S; Walker DM; Hawkins TR
    Environ Sci Technol; 2023 Dec; 57(48):19602-19611. PubMed ID: 37955401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the sweet sorghum-based ethanol potential on saline-alkali land with DSSAT model and LCA approach.
    Fu J; Yan X; Jiang D
    Biotechnol Biofuels; 2021 Feb; 14(1):44. PubMed ID: 33593411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8182-9. PubMed ID: 21846117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
    Tan ECD; Hawkins TR; Lee U; Tao L; Meyer PA; Wang M; Thompson T
    Environ Sci Technol; 2021 Jun; 55(11):7561-7570. PubMed ID: 33998807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.
    Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S
    Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.