These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24088415)

  • 21. Ethanol production from mixtures of wheat straw and wheat meal.
    Erdei B; Barta Z; Sipos B; Réczey K; Galbe M; Zacchi G
    Biotechnol Biofuels; 2010 Jul; 3():16. PubMed ID: 20598120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Moderate alkali-thermophilic ethanologenesis by locally isolated
    Ahmad QU; Yang ST; Manzoor M; Qazi JI
    Biotechnol Biofuels; 2017; 10():105. PubMed ID: 28450886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defining research & development process targets through retro-techno-economic analysis: The sugarcane biorefinery case.
    Longati AA; Lino ARA; Giordano RC; Furlan FF; Cruz AJG
    Bioresour Technol; 2018 Sep; 263():1-9. PubMed ID: 29723843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept.
    Rabelo SC; Carrere H; Maciel Filho R; Costa AC
    Bioresour Technol; 2011 Sep; 102(17):7887-95. PubMed ID: 21689929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.
    Dias MO; Junqueira TL; Cavalett O; Cunha MP; Jesus CD; Rossell CE; Maciel Filho R; Bonomi A
    Bioresour Technol; 2012 Jan; 103(1):152-61. PubMed ID: 22019267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.
    Milessi TS; Antunes FA; Chandel AK; Silva SS
    3 Biotech; 2013 Oct; 3(5):373-379. PubMed ID: 28324330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill.
    Ali Mandegari M; Farzad S; Görgens JF
    Bioresour Technol; 2017 Jan; 224():314-326. PubMed ID: 27816352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Techno-economic analysis for a sugarcane biorefinery: Colombian case.
    Moncada J; El-Halwagi MM; Cardona CA
    Bioresour Technol; 2013 May; 135():533-43. PubMed ID: 23021947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products.
    Lee H; Jung Sohn Y; Jeon S; Yang H; Son J; Jin Kim Y; Jae Park S
    Bioresour Technol; 2023 May; 376():128879. PubMed ID: 36921642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A closed-loop strategy for endoglucanase production using sugarcane bagasse liquefied by a home-made enzymatic cocktail.
    Squinca P; Badino AC; Farinas CS
    Bioresour Technol; 2018 Feb; 249():976-982. PubMed ID: 29145125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feasibility of commercial waste biorefineries for cassava starch industries: Techno-economic assessment.
    Padi RK; Chimphango A
    Bioresour Technol; 2020 Feb; 297():122461. PubMed ID: 31787518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Techno-economic analysis of an integrated biorefinery to convert poplar into jet fuel, xylitol, and formic acid.
    Seufitelli GVS; El-Husseini H; Pascoli DU; Bura R; Gustafson R
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):143. PubMed ID: 36539896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of sugarcane (Saccharum spp.) leaf senescence: implications for biofuel production.
    Martins MTB; de Souza WR; da Cunha BADB; Basso MF; de Oliveira NG; Vinecky F; Martins PK; de Oliveira PA; Arenque-Musa BC; de Souza AP; Buckeridge MS; Kobayashi AK; Quirino BF; Molinari HBC
    Biotechnol Biofuels; 2016; 9():153. PubMed ID: 27453728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries.
    Pereira LG; Dias MO; MacLean HL; Bonomi A
    Bioresour Technol; 2015 Aug; 190():242-50. PubMed ID: 25958148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis.
    Chandel AK; Antunes FA; Silva MB; da Silva SS
    Biotechnol Biofuels; 2013; 6():102. PubMed ID: 23856012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid.
    Zhou X; Xu Y
    Bioresour Technol; 2019 Jun; 282():81-87. PubMed ID: 30852335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perspectives on bioenergy and biotechnology in Brazil.
    Pessoa A; Roberto IC; Menossi M; dos Santos RR; Filho SO; Penna TC
    Appl Biochem Biotechnol; 2005; 121-124():59-70. PubMed ID: 15917587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 Aug; 142():390-9. PubMed ID: 23748087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process.
    de Araujo Guilherme A; Dantas PVF; Padilha CEA; Dos Santos ES; de Macedo GR
    J Environ Manage; 2019 Mar; 234():44-51. PubMed ID: 30599329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.