These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Critical dynamics on a large human Open Connectome network. Ódor G Phys Rev E; 2016 Dec; 94(6-1):062411. PubMed ID: 28085398 [TBL] [Abstract][Full Text] [Related]
5. The criticality hypothesis: how local cortical networks might optimize information processing. Beggs JM Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):329-43. PubMed ID: 17673410 [TBL] [Abstract][Full Text] [Related]
7. Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks. Massobrio P; Pasquale V; Martinoia S Sci Rep; 2015 Jun; 5():10578. PubMed ID: 26030608 [TBL] [Abstract][Full Text] [Related]
8. A constrained evolutionary computation method for detecting controlling regions of cortical networks. Tang Y; Wang Z; Gao H; Swift S; Kurths J IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1569-81. PubMed ID: 23221081 [TBL] [Abstract][Full Text] [Related]
9. Low-dimensional functionality of complex network dynamics: neurosensory integration in the Caenorhabditis Elegans connectome. Kunert J; Shlizerman E; Kutz JN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052805. PubMed ID: 25353842 [TBL] [Abstract][Full Text] [Related]
10. A critical study of network models for neural networks and their dynamics. Govan G; Xenos A; Frisco P J Theor Biol; 2013 Nov; 336():1-10. PubMed ID: 23871957 [TBL] [Abstract][Full Text] [Related]
11. Estimating complex cortical networks via surface recordings- a critical note. Antiqueira L; Rodrigues FA; van Wijk BC; Costa Lda F; Daffertshofer A Neuroimage; 2010 Nov; 53(2):439-49. PubMed ID: 20542123 [TBL] [Abstract][Full Text] [Related]
12. Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization. di Santo S; Villegas P; Burioni R; Muñoz MA Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1356-E1365. PubMed ID: 29378970 [TBL] [Abstract][Full Text] [Related]
13. Comparative approximations of criticality in a neural and quantum regime. Bettinger JS Prog Biophys Mol Biol; 2017 Dec; 131():445-462. PubMed ID: 29031703 [TBL] [Abstract][Full Text] [Related]
14. Self-organized criticality in a simple model of neurons based on small-world networks. Lin M; Chen T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016133. PubMed ID: 15697684 [TBL] [Abstract][Full Text] [Related]
15. Effects of lesions on synchrony and metastability in cortical networks. Váša F; Shanahan M; Hellyer PJ; Scott G; Cabral J; Leech R Neuroimage; 2015 Sep; 118():456-67. PubMed ID: 26049146 [TBL] [Abstract][Full Text] [Related]
16. A learning rule for the emergence of stable dynamics and timing in recurrent networks. Buonomano DV J Neurophysiol; 2005 Oct; 94(4):2275-83. PubMed ID: 16160088 [TBL] [Abstract][Full Text] [Related]
18. A structure-dynamic approach to cortical organization: number of paths and accessibility. Rodrigues FA; da Fontoura Costa L J Neurosci Methods; 2009 Sep; 183(1):57-62. PubMed ID: 19591866 [TBL] [Abstract][Full Text] [Related]
19. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. Kaiser M; Varier S Network; 2011; 22(1-4):143-7. PubMed ID: 22149674 [TBL] [Abstract][Full Text] [Related]
20. Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments. Barrès V; Simons A; Arbib M Neural Netw; 2013 Jan; 37():66-92. PubMed ID: 23177656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]