These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 24089029)

  • 1. The mutational landscape of phosphorylation signaling in cancer.
    Reimand J; Wagih O; Bader GD
    Sci Rep; 2013 Oct; 3():2651. PubMed ID: 24089029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers.
    Reimand J; Bader GD
    Mol Syst Biol; 2013; 9():637. PubMed ID: 23340843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
    Zhu H; Uusküla-Reimand L; Isaev K; Wadi L; Alizada A; Shuai S; Huang V; Aduluso-Nwaobasi D; Paczkowska M; Abd-Rabbo D; Ocsenas O; Liang M; Thompson JD; Li Y; Ruan L; Krassowski M; Dzneladze I; Simpson JT; Lupien M; Stein LD; Boutros PC; Wilson MD; Reimand J
    Mol Cell; 2020 Mar; 77(6):1307-1321.e10. PubMed ID: 31954095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution bias analysis of germline and somatic single-nucleotide variations that impact protein functional site and neighboring amino acids.
    Pan Y; Yan C; Hu Y; Fan Y; Pan Q; Wan Q; Torcivia-Rodriguez J; Mazumder R
    Sci Rep; 2017 Feb; 7():42169. PubMed ID: 28176830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.
    Cho A; Shim JE; Kim E; Supek F; Lehner B; Lee I
    Genome Biol; 2016 Jun; 17(1):129. PubMed ID: 27333808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic analysis of the intersection of disease mutations with protein modifications.
    Simpson CM; Zhang B; Hornbeck PV; Gnad F
    BMC Med Genomics; 2019 Jul; 12(Suppl 6):109. PubMed ID: 31345222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data.
    Sayılgan JF; Haliloğlu T; Gönen M
    Proteins; 2021 Jun; 89(6):721-730. PubMed ID: 33550612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pan-Cancer Catalogue of Cancer Driver Protein Interaction Interfaces.
    Porta-Pardo E; Garcia-Alonso L; Hrabe T; Dopazo J; Godzik A
    PLoS Comput Biol; 2015 Oct; 11(10):e1004518. PubMed ID: 26485003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfiguring phosphorylation signaling by genetic polymorphisms affects cancer susceptibility.
    Wang Y; Cheng H; Pan Z; Ren J; Liu Z; Xue Y
    J Mol Cell Biol; 2015 Jun; 7(3):187-202. PubMed ID: 25722345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
    Ozturk K; Carter H
    Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-Specific Signaling Networks Rewired by Major Somatic Mutations in Human Cancer Revealed by Proteome-Wide Discovery.
    Zhao J; Cheng F; Zhao Z
    Cancer Res; 2017 Jun; 77(11):2810-2821. PubMed ID: 28364002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins.
    Krassowski M; Paczkowska M; Cullion K; Huang T; Dzneladze I; Ouellette BFF; Yamada JT; Fradet-Turcotte A; Reimand J
    Nucleic Acids Res; 2018 Jan; 46(D1):D901-D910. PubMed ID: 29126202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development.
    Chen L; Miao Y; Liu M; Zeng Y; Gao Z; Peng D; Hu B; Li X; Zheng Y; Xue Y; Zuo Z; Xie Y; Ren J
    Front Genet; 2018; 9():254. PubMed ID: 30065750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.