These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography. Trasischker W; Werkmeister RM; Zotter S; Baumann B; Torzicky T; Pircher M; Hitzenberger CK J Biomed Opt; 2013 Nov; 18(11):116010. PubMed ID: 24247747 [TBL] [Abstract][Full Text] [Related]
5. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography. Nguyen TM; Zorgani A; Lescanne M; Boccara C; Fink M; Catheline S J Biomed Opt; 2016 Dec; 21(12):126013. PubMed ID: 27999863 [TBL] [Abstract][Full Text] [Related]
6. Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator. Morofke D; Kolios MC; Vitkin IA; Yang VX Opt Lett; 2007 Feb; 32(3):253-5. PubMed ID: 17215936 [TBL] [Abstract][Full Text] [Related]
7. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range. Cimalla P; Walther J; Mittasch M; Koch E J Biomed Opt; 2011 Nov; 16(11):116020. PubMed ID: 22112125 [TBL] [Abstract][Full Text] [Related]
8. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography. Blatter C; Meijer EF; Nam AS; Jones D; Bouma BE; Padera TP; Vakoc BJ Sci Rep; 2016 Jul; 6():29035. PubMed ID: 27377852 [TBL] [Abstract][Full Text] [Related]
9. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography. Schaefer AW; Reynolds JJ; Marks DL; Boppart SA IEEE Trans Biomed Eng; 2004 Jan; 51(1):186-90. PubMed ID: 14723509 [TBL] [Abstract][Full Text] [Related]
14. Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography. Bukowska D; Ruminski D; Szlag D; Grulkowski I; Wlodarczyk J; Szkulmowski M; Wilczynski G; Gorczynska I; Wojtkowski M J Biomed Opt; 2012 Oct; 17(10):101515. PubMed ID: 23223991 [TBL] [Abstract][Full Text] [Related]
15. Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation. Watanabe Y; Sato M Opt Express; 2008 Jan; 16(2):524-34. PubMed ID: 18542127 [TBL] [Abstract][Full Text] [Related]
16. Impact of velocity gradient in Poiseuille flow on the statistics of coherent radiation scattered by flowing Brownian particles in optical coherence tomography. Popov I; Weatherbee A; Vitkin A J Biomed Opt; 2019 Sep; 24(9):1-7. PubMed ID: 31562708 [TBL] [Abstract][Full Text] [Related]
17. Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex. Luo Z; Wang Z; Yuan Z; Du C; Pan Y Opt Lett; 2008 May; 33(10):1156-8. PubMed ID: 18483544 [TBL] [Abstract][Full Text] [Related]
18. Dynamic light scattering arising from flowing Brownian particles: analytical model in optical coherence tomography conditions. Popov I; Weatherbee AS; Vitkin IA J Biomed Opt; 2014 Dec; 19(12):127004. PubMed ID: 25517256 [TBL] [Abstract][Full Text] [Related]
19. Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation. Bower BA; Zhao M; Zawadzki RJ; Izatt JA J Biomed Opt; 2007; 12(4):041214. PubMed ID: 17867803 [TBL] [Abstract][Full Text] [Related]
20. Signal power decrease due to fringe washout as an extension of the limited Doppler flow measurement range in spectral domain optical coherence tomography. Walther J; Mueller G; Morawietz H; Koch E J Biomed Opt; 2010; 15(4):041511. PubMed ID: 20799789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]