BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24089292)

  • 1. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo.
    Li J; Wang S; Manapuram RK; Singh M; Menodiado FM; Aglyamov S; Emelianov S; Twa MD; Larin KV
    J Biomed Opt; 2013 Dec; 18(12):121503. PubMed ID: 24089292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography.
    Manapuram RK; Aglyamov SR; Monediado FM; Mashiatulla M; Li J; Emelianov SY; Larin KV
    J Biomed Opt; 2012 Oct; 17(10):100501. PubMed ID: 23223976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography.
    Nguyen TM; Arnal B; Song S; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2015 Jan; 20(1):016001. PubMed ID: 25554970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobomb optical coherence elastography.
    Liu CH; Nevozhay D; Schill A; Singh M; Das S; Nair A; Han Z; Aglyamov S; Larin KV; Sokolov KV
    Opt Lett; 2018 May; 43(9):2006-2009. PubMed ID: 29714732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
    Ramier A; Tavakol B; Yun SH
    Opt Express; 2019 Jun; 27(12):16635-16649. PubMed ID: 31252887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography.
    Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV
    J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography.
    Song S; Huang Z; Nguyen TM; Wong EY; Arnal B; O'Donnell M; Wang RK
    J Biomed Opt; 2013 Dec; 18(12):121509. PubMed ID: 24213539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second.
    Singh M; Wu C; Liu CH; Li J; Schill A; Nair A; Larin KV
    Opt Lett; 2015 Jun; 40(11):2588-91. PubMed ID: 26030564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-resolved acoustic radiation force optical coherence elastography.
    Qi W; Chen R; Chou L; Liu G; Zhang J; Zhou Q; Chen Z
    J Biomed Opt; 2012 Nov; 17(11):110505. PubMed ID: 23123971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications.
    Das S; Schill A; Liu CH; Aglyamov S; Larin KV
    J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32189479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances.
    Zhou Y; Wang Y; Shen M; Jin Z; Chen Y; Zhou Y; Qu J; Zhu D
    J Biomed Opt; 2019 Oct; 24(10):1-7. PubMed ID: 31605471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography.
    Nguyen TM; Song S; Arnal B; Huang Z; O'Donnell M; Wang RK
    Opt Lett; 2014 Feb; 39(4):838-41. PubMed ID: 24562220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving-source elastic wave reconstruction for high-resolution optical coherence elastography.
    Hsieh BY; Song S; Nguyen TM; Yoon SJ; Shen TT; Wang RK; O'Donnell M
    J Biomed Opt; 2016 Nov; 21(11):116006. PubMed ID: 27822580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of iris elasticity using acoustic radiation force optical coherence elastography.
    Zhu Y; Zhang Y; Shi G; Xue Q; Han X; Ai S; Shi J; Xie C; He X
    Appl Opt; 2020 Dec; 59(34):10739-10745. PubMed ID: 33361893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking.
    Singh M; Li J; Vantipalli S; Wang S; Han Z; Nair A; Aglyamov SR; Twa MD; Larin KV
    IEEE J Sel Top Quantum Electron; 2016; 22(3):. PubMed ID: 27547022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography.
    Zhu J; Yu J; Qu Y; He Y; Li Y; Yang Q; Huo T; He X; Chen Z
    Opt Lett; 2018 May; 43(10):2388-2391. PubMed ID: 29762599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation.
    Han Z; Aglyamov SR; Li J; Singh M; Wang S; Vantipalli S; Wu C; Liu CH; Twa MD; Larin KV
    J Biomed Opt; 2015 Feb; 20(2):20501. PubMed ID: 25649624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.