BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24089334)

  • 1. A comparative collision-based analysis of human gait.
    Lee DV; Comanescu TN; Butcher MT; Bertram JE
    Proc Biol Sci; 2013 Nov; 280(1771):20131779. PubMed ID: 24089334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A collisional perspective on quadrupedal gait dynamics.
    Lee DV; Bertram JE; Anttonen JT; Ros IG; Harris SL; Biewener AA
    J R Soc Interface; 2011 Oct; 8(63):1480-6. PubMed ID: 21471189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanics of skipping gaits: a third locomotion paradigm?
    Minetti AE
    Proc Biol Sci; 1998 Jul; 265(1402):1227-35. PubMed ID: 9699315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M
    J R Soc Interface; 2011 Jan; 8(54):74-98. PubMed ID: 20542957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.
    Parchman AJ; Reilly SM; Biknevicius AR
    J Exp Biol; 2003 Apr; 206(Pt 8):1379-88. PubMed ID: 12624172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walk-run classification of symmetrical gaits in the horse: a multidimensional approach.
    Starke SD; Robilliard JJ; Weller R; Wilson AM; Pfau T
    J R Soc Interface; 2009 Apr; 6(33):335-42. PubMed ID: 18664427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.
    Hubel TY; Usherwood JR
    J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inelastic quadrupedal model discovers four-beat walking, two-beat running, and pseudo-elastic actuation as energetically optimal.
    Polet DT; Bertram JEA
    PLoS Comput Biol; 2019 Nov; 15(11):e1007444. PubMed ID: 31751339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cost of leg forces in bipedal locomotion: a simple optimization study.
    Rebula JR; Kuo AD
    PLoS One; 2015; 10(2):e0117384. PubMed ID: 25707000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H; Seyfarth A; Blickhan R
    Proc Biol Sci; 2006 Nov; 273(1603):2861-7. PubMed ID: 17015312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking and running in the red-legged running frog, Kassina maculata.
    Ahn AN; Furrow E; Biewener AA
    J Exp Biol; 2004 Jan; 207(Pt 3):399-410. PubMed ID: 14691087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
    Daley MA; Channon AJ; Nolan GS; Hall J
    J Exp Biol; 2016 Oct; 219(Pt 20):3301-3308. PubMed ID: 27802152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipedal animals, and their differences from humans.
    Alexander RM
    J Anat; 2004 May; 204(5):321-30. PubMed ID: 15198697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of scale effects in mammalian quadrupedal running.
    Herr HM; Huang GT; McMahon TA
    J Exp Biol; 2002 Apr; 205(Pt 7):959-67. PubMed ID: 11916991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive value of ambling gaits in primates and other mammals.
    Schmitt D; Cartmill M; Griffin TM; Hanna JB; Lemelin P
    J Exp Biol; 2006 Jun; 209(Pt 11):2042-9. PubMed ID: 16709907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling of the spring in the leg during bouncing gaits of mammals.
    Lee DV; Isaacs MR; Higgins TE; Biewener AA; McGowan CP
    Integr Comp Biol; 2014 Dec; 54(6):1099-108. PubMed ID: 25305189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.