These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24089352)

  • 21. Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors.
    Mahadik SM; Chodankar NR; Han YK; Dubal DP; Patil S
    ChemSusChem; 2021 Dec; 14(24):5384-5398. PubMed ID: 34643058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects.
    Shah SS; Aziz MA; Yamani ZH
    Chem Rec; 2022 Jul; 22(7):e202200018. PubMed ID: 35426239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.
    Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G
    Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercapacitors: An Efficient Way for Energy Storage Application.
    Czagany M; Hompoth S; Keshri AK; Pandit N; Galambos I; Gacsi Z; Baumli P
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen and Phosphorus Co-doped Porous Carbon for High-Performance Supercapacitors.
    Zhou J; Ye S; Zeng Q; Yang H; Chen J; Guo Z; Jiang H; Rajan K
    Front Chem; 2020; 8():105. PubMed ID: 32154218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanded Graphite-Based Materials for Supercapacitors: A Review.
    Zhang D; Tan C; Zhang W; Pan W; Wang Q; Li L
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage.
    Jayaramulu K; Dubal DP; Nagar B; Ranc V; Tomanec O; Petr M; Datta KKR; Zboril R; Gómez-Romero P; Fischer RA
    Adv Mater; 2018 Apr; 30(15):e1705789. PubMed ID: 29516561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects.
    Salunkhe RR; Kaneti YV; Yamauchi Y
    ACS Nano; 2017 Jun; 11(6):5293-5308. PubMed ID: 28613076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of SnS
    Chauhan H; Singh MK; Kumar P; Hashmi SA; Deka S
    Nanotechnology; 2017 Jan; 28(2):025401. PubMed ID: 27924781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research Progress in MnO
    Zhang QZ; Zhang D; Miao ZC; Zhang XL; Chou SL
    Small; 2018 Jun; 14(24):e1702883. PubMed ID: 29707887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors.
    Wang H; Zhu C; Chao D; Yan Q; Fan HJ
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 28940422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cation intercalated one-dimensional manganese hydroxide nanorods and hierarchical mesoporous activated carbon nanosheets with ultrahigh capacitance retention asymmetric supercapacitors.
    Selvaraj AR; Kim HJ; Senthil K; Prabakar K
    J Colloid Interface Sci; 2020 Apr; 566():485-494. PubMed ID: 32035353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.
    Li J; Liu K; Gao X; Yao B; Huo K; Cheng Y; Cheng X; Chen D; Wang B; Sun W; Ding D; Liu M; Huang L
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24622-8. PubMed ID: 26477268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction Building Materials as a Potential for Structural Supercapacitor Applications.
    Basha SI; Shah SS; Ahmad S; Maslehuddin M; Al-Zahrani MM; Aziz MA
    Chem Rec; 2022 Nov; 22(11):e202200134. PubMed ID: 35832015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Breakthroughs in Supercapacitors Boosted by Macrocycles.
    Jin XY; Ge Q; Cong H; Zhang YQ; Zhao JL; Jiang N
    ChemSusChem; 2023 Aug; 16(15):e202300027. PubMed ID: 36946375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.
    Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS
    ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.
    Yao K; Chen S; Rahimabady M; Mirshekarloo MS; Yu S; Tay FE; Sritharan T; Lu L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1968-74. PubMed ID: 21937333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress of Two-Dimensional Ti
    Li L; Wen J; Zhang X
    ChemSusChem; 2020 Mar; 13(6):1296-1329. PubMed ID: 31816166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preaddition of Cations to Electrolytes for Aqueous 2.2 V High Voltage Hybrid Supercapacitor with Superlong Cycling Life and Its Energy Storage Mechanism.
    Zhang M; Fan H; Gao Y; Zhao N; Wang C; Ma J; Ma L; Yadav AK; Wang W; Vincent Lee WS; Xiong T; Xue J; Xia Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17659-17668. PubMed ID: 32202755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.