These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24089722)

  • 41. Consequences of ligand bivalency in interactions involving particulate receptors: equilibrium and kinetic studies with Sephadex-concanavalin A, butylagarose-phosphorylase b, and Fc receptor-IgG dimer interactions as model systems.
    Hogg PJ; Reilly PE; Winzor DJ
    Biochemistry; 1987 Apr; 26(7):1867-73. PubMed ID: 2439115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of receptor density on the forward rate constant for binding of ligands to cell surface receptors.
    Erickson J; Goldstein B; Holowka D; Baird B
    Biophys J; 1987 Oct; 52(4):657-62. PubMed ID: 2960385
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversible sequential-binding probe receptor-ligand interactions in single cells.
    Schreiter C; Gjoni M; Hovius R; Martinez KL; Segura JM; Vogel H
    Chembiochem; 2005 Dec; 6(12):2187-94. PubMed ID: 16270372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors.
    Axelrod D; Wang MD
    Biophys J; 1994 Mar; 66(3 Pt 1):588-600. PubMed ID: 8011892
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Statistics of Reaction Flux and Dynamical Activity Associated with a Diffusion-Influenced Ligand-Binding Reaction.
    Ghosal A
    J Phys Chem B; 2021 Feb; 125(7):1760-1767. PubMed ID: 33565882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. First passage and cooperativity of queuing kinetics.
    D'Orsogna MR; Chou T
    Phys Rev Lett; 2005 Oct; 95(17):170603. PubMed ID: 16383812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An accurate method for determination of receptor-ligand and enzyme-inhibitor dissociation constants from displacement curves.
    Horovitz A; Levitzki A
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6654-8. PubMed ID: 3477796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of diffusion in ligand binding to macromolecules and cell-bound receptors.
    Shoup D; Szabo A
    Biophys J; 1982 Oct; 40(1):33-9. PubMed ID: 7139033
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increased accuracy of ligand sensing by receptor diffusion on cell surface.
    Aquino G; Endres RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041902. PubMed ID: 21230308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analytical determination of receptor-ligand dissociation constants of two populations of receptors from displacement curves.
    Almagor H; Levitzki A
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6482-6. PubMed ID: 2168549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events.
    Gunnarsson A; Dexlin L; Wallin P; Svedhem S; Jönsson P; Wingren C; Höök F
    J Am Chem Soc; 2011 Sep; 133(38):14852-5. PubMed ID: 21866974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Monte Carlo study of the dynamics of G-protein activation.
    Mahama PA; Linderman JJ
    Biophys J; 1994 Sep; 67(3):1345-57. PubMed ID: 7811949
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamic parameters of ligand-receptor interactions: computation and error margins.
    Pliska V
    J Recept Signal Transduct Res; 1997; 17(1-3):495-510. PubMed ID: 9029510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Binding kinetics and multi-bond: Finding correlations by synthesizing interactions between ligand-coated bionanoparticles and receptor surfaces.
    Wang W; Voigt A; Wolff MW; Reichl U; Sundmacher K
    Anal Biochem; 2016 Jul; 505():8-17. PubMed ID: 27108189
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics of allosteric conformational transition of a macromolecule prior to ligand binding: analysis of stopped-flow kinetic experiments.
    Galletto R; Jezewska MJ; Bujalowski W
    Cell Biochem Biophys; 2005; 42(2):121-44. PubMed ID: 15858229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased accuracy of ligand sensing by receptor internalization.
    Aquino G; Endres RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021909. PubMed ID: 20365597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding, internalization, and intracellular processing of protein ligands. Derivation of rate constants by computer modeling.
    Myers AC; Kovach JS; Vuk-Pavlović S
    J Biol Chem; 1987 May; 262(14):6494-9. PubMed ID: 2952651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effective rate models for receptors distributed in a layer above a surface: application to cells and Biacore.
    Wofsy C; Goldstein B
    Biophys J; 2002 Apr; 82(4):1743-55. PubMed ID: 11916835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.
    Hu J; Lipowsky R; Weikl TR
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15283-8. PubMed ID: 24006364
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands.
    Irvine DJ; Hue KA; Mayes AM; Griffith LG
    Biophys J; 2002 Jan; 82(1 Pt 1):120-32. PubMed ID: 11751301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.