These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
983 related articles for article (PubMed ID: 24089732)
1. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems. Wu W; Wang J J Chem Phys; 2013 Sep; 139(12):121920. PubMed ID: 24089732 [TBL] [Abstract][Full Text] [Related]
2. Landscape framework and global stability for stochastic reaction diffusion and general spatially extended systems with intrinsic fluctuations. Wu W; Wang J J Phys Chem B; 2013 Oct; 117(42):12908-34. PubMed ID: 23865936 [TBL] [Abstract][Full Text] [Related]
3. The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. Xu L; Shi H; Feng H; Wang J J Chem Phys; 2012 Apr; 136(16):165102. PubMed ID: 22559506 [TBL] [Abstract][Full Text] [Related]
4. The potential and flux landscape theory of evolution. Zhang F; Xu L; Zhang K; Wang E; Wang J J Chem Phys; 2012 Aug; 137(6):065102. PubMed ID: 22897313 [TBL] [Abstract][Full Text] [Related]
5. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems. Wu W; Wang J J Chem Phys; 2014 Sep; 141(10):105104. PubMed ID: 25217956 [TBL] [Abstract][Full Text] [Related]
6. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. Li C; Wang E; Wang J J Chem Phys; 2012 May; 136(19):194108. PubMed ID: 22612081 [TBL] [Abstract][Full Text] [Related]
7. Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: curvature, gauge field, and generalized fluctuation-dissipation theorem. Feng H; Wang J J Chem Phys; 2011 Dec; 135(23):234511. PubMed ID: 22191890 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the potential and flux landscapes of multi-locus evolution. Xu L; Wang J J Theor Biol; 2017 Jun; 422():31-49. PubMed ID: 28414087 [TBL] [Abstract][Full Text] [Related]
9. Landscape-Flux Framework for Nonequilibrium Dynamics and Thermodynamics of Open Hamiltonian Systems Coupled to Multiple Heat Baths. Wu W; Wang J J Phys Chem B; 2021 Jul; 125(28):7809-7827. PubMed ID: 34232645 [TBL] [Abstract][Full Text] [Related]
10. The potential and flux landscape theory of ecology. Xu L; Zhang F; Zhang K; Wang E; Wang J PLoS One; 2014; 9(1):e86746. PubMed ID: 24497975 [TBL] [Abstract][Full Text] [Related]
11. Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach. Xu L; Patterson D; Staver AC; Levin SA; Wang J Proc Natl Acad Sci U S A; 2021 Jun; 118(24):. PubMed ID: 34117123 [TBL] [Abstract][Full Text] [Related]
12. Landscapes of non-gradient dynamics without detailed balance: stable limit cycles and multiple attractors. Ge H; Qian H Chaos; 2012 Jun; 22(2):023140. PubMed ID: 22757547 [TBL] [Abstract][Full Text] [Related]
13. Curl flux, coherence, and population landscape of molecular systems: nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics. Zhang Z; Wang J J Chem Phys; 2014 Jun; 140(24):245101. PubMed ID: 24985680 [TBL] [Abstract][Full Text] [Related]
14. Weiss mean-field approximation for multicomponent stochastic spatially extended systems. Kurushina SE; Maximov VV; Romanovskii YM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716 [TBL] [Abstract][Full Text] [Related]
15. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
16. Circular stochastic fluctuations in SIS epidemics with heterogeneous contacts among sub-populations. Wang JZ; Qian M; Qian H Theor Popul Biol; 2012 May; 81(3):223-31. PubMed ID: 22273833 [TBL] [Abstract][Full Text] [Related]
17. Landscape and flux govern cellular mode-hopping between oscillations. Li C; Ye L J Chem Phys; 2019 Nov; 151(17):175101. PubMed ID: 31703512 [TBL] [Abstract][Full Text] [Related]
18. Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision. Ye L; Song Z; Li C J Chem Phys; 2021 Jan; 154(2):025101. PubMed ID: 33445890 [TBL] [Abstract][Full Text] [Related]
19. Levy diffusion in a force field, huber relaxation kinetics, and nonequilibrium thermodynamics: H theorem for enhanced diffusion with Levy white noise. Vlad MO; Ross J; Schneider FW Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1743-63. PubMed ID: 11088636 [TBL] [Abstract][Full Text] [Related]
20. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]