These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24089755)
1. Derivative couplings and analytic gradients for diabatic states, with an implementation for Boys-localized configuration-interaction singles. Fatehi S; Alguire E; Subotnik JE J Chem Phys; 2013 Sep; 139(12):124112. PubMed ID: 24089755 [TBL] [Abstract][Full Text] [Related]
2. Analysis of localized diabatic states beyond the condon approximation for excitation energy transfer processes. Alguire EC; Fatehi S; Shao Y; Subotnik JE J Phys Chem A; 2014 Dec; 118(51):11891-900. PubMed ID: 24447246 [TBL] [Abstract][Full Text] [Related]
3. Diabatic couplings for charge recombination via Boys localization and spin-flip configuration interaction singles. Alguire E; Subotnik JE J Chem Phys; 2011 Jul; 135(4):044114. PubMed ID: 21806097 [TBL] [Abstract][Full Text] [Related]
4. Analytic derivative couplings between configuration-interaction-singles states with built-in electron-translation factors for translational invariance. Fatehi S; Alguire E; Shao Y; Subotnik JE J Chem Phys; 2011 Dec; 135(23):234105. PubMed ID: 22191862 [TBL] [Abstract][Full Text] [Related]
5. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory. Zhang X; Herbert JM J Chem Phys; 2014 Aug; 141(6):064104. PubMed ID: 25134548 [TBL] [Abstract][Full Text] [Related]
6. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings. Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499 [TBL] [Abstract][Full Text] [Related]
7. Determining quasidiabatic coupled electronic state Hamiltonians using derivative couplings: A normal equations based method. Papas BN; Schuurman MS; Yarkony DR J Chem Phys; 2008 Sep; 129(12):124104. PubMed ID: 19045003 [TBL] [Abstract][Full Text] [Related]
8. Optimal diabatic states based on solvation parameters. Alguire E; Subotnik JE J Chem Phys; 2012 Nov; 137(19):194108. PubMed ID: 23181295 [TBL] [Abstract][Full Text] [Related]
9. Analytic gradient and derivative couplings for the spin-flip extended configuration interaction singles method: Theory, implementation, and application to proton transfer. Liu J; Koslowski A; Thiel W J Chem Phys; 2018 Jun; 148(24):244108. PubMed ID: 29960378 [TBL] [Abstract][Full Text] [Related]
10. Towards a highly efficient theoretical treatment of Jahn-Teller effects in molecular spectra: the 1 2A and 2 2A electronic states of the ethoxy radical. Young RA; Yarkony DR J Chem Phys; 2006 Dec; 125(23):234301. PubMed ID: 17190552 [TBL] [Abstract][Full Text] [Related]
11. Linking the historical and chemical definitions of diabatic states for charge and excitation energy transfer reactions in condensed phase. Pavanello M; Neugebauer J J Chem Phys; 2011 Oct; 135(13):134113. PubMed ID: 21992288 [TBL] [Abstract][Full Text] [Related]
12. A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems. Liu W; Lunkenheimer B; Settels V; Engels B; Fink RF; Köhn A J Chem Phys; 2015 Aug; 143(8):084106. PubMed ID: 26328817 [TBL] [Abstract][Full Text] [Related]
13. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: a more general construction procedure and an analysis of the diabatic representation. Zhu X; Yarkony DR J Chem Phys; 2012 Dec; 137(22):22A511. PubMed ID: 23249048 [TBL] [Abstract][Full Text] [Related]
14. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization. Subotnik JE; Yeganeh S; Cave RJ; Ratner MA J Chem Phys; 2008 Dec; 129(24):244101. PubMed ID: 19123489 [TBL] [Abstract][Full Text] [Related]
16. Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach. Zhang X; Herbert JM J Chem Phys; 2015 Feb; 142(6):064109. PubMed ID: 25681889 [TBL] [Abstract][Full Text] [Related]
17. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics. Valero R; Truhlar DG J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756 [TBL] [Abstract][Full Text] [Related]
18. The electronic couplings in electron transfer and excitation energy transfer. Hsu CP Acc Chem Res; 2009 Apr; 42(4):509-18. PubMed ID: 19215069 [TBL] [Abstract][Full Text] [Related]
19. Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 Guan Y; Zhang DH; Guo H; Yarkony DR Phys Chem Chem Phys; 2019 Jul; 21(26):14205-14213. PubMed ID: 30523350 [TBL] [Abstract][Full Text] [Related]
20. Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units. Hohenstein EG; Bouduban ME; Song C; Luehr N; Ufimtsev IS; Martínez TJ J Chem Phys; 2015 Jul; 143(1):014111. PubMed ID: 26156469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]