These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24089760)

  • 1. Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients.
    Bader P; Blanes S; Casas F
    J Chem Phys; 2013 Sep; 139(12):124117. PubMed ID: 24089760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On processed splitting methods and high-order actions in path-integral Monte Carlo simulations.
    Casas F
    J Chem Phys; 2010 Oct; 133(15):154114. PubMed ID: 20969377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Solution of the Electronic Eigenvalue Problem Using Wavepacket Propagation.
    Neville SP; Schuurman MS
    J Chem Theory Comput; 2018 Mar; 14(3):1433-1441. PubMed ID: 29394052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian.
    Blanes S; Casas F; Murua A
    J Chem Phys; 2017 Mar; 146(11):114109. PubMed ID: 28330361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056708. PubMed ID: 18233791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the full anisotropic liquid crystal waveguides by using an iterative pseudospectral-based eigenvalue method.
    Huang CC
    Opt Express; 2011 Feb; 19(4):3363-78. PubMed ID: 21369159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
    Hesthaven JS; Warburton T
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the unphysical impact of complex absorbing potentials on the Hamiltonian and its remedy.
    Scheit S; Meyer HD; Moiseyev N; Cederbaum LS
    J Chem Phys; 2006 Jan; 124(3):034102. PubMed ID: 16438562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space-time adaptive numerical methods for geophysical applications.
    Castro CE; Käser M; Toro EF
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4613-31. PubMed ID: 19840984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of positive decompositions of exponential operators.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016703. PubMed ID: 15697760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Class-incremental generalized discriminant analysis.
    Zheng W
    Neural Comput; 2006 Apr; 18(4):979-1006. PubMed ID: 16494698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of subspace preconditioned LSQR algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Huang W; Shou G; Liu F; Crozier S
    Med Eng Phys; 2009 Oct; 31(8):979-85. PubMed ID: 19564127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Time Propagation for Time-dependent Schrödinger equations.
    Auzinger W; Hofstätter H; Koch O; Quell M
    Int J Appl Comput Math; 2021; 7(1):6. PubMed ID: 33381631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate time propagation for the Schrodinger equation with an explicitly time-dependent Hamiltonian.
    Kormann K; Holmgren S; Karlsson HO
    J Chem Phys; 2008 May; 128(18):184101. PubMed ID: 18532793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional diffusion equation and impedance spectroscopy of electrolytic cells.
    Lenzi EK; Evangelista LR; Barbero G
    J Phys Chem B; 2009 Aug; 113(33):11371-4. PubMed ID: 19637845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical procedures for solving nonsymmetric eigenvalue problems associated with optical resonators.
    Murphy WD; Bernabe ML
    Appl Opt; 1978 Aug; 17(15):2358-65. PubMed ID: 20203788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional supersymmetric quantum mechanics: a scalar Hamiltonian approach to excited states by the imaginary time propagation method.
    Chou CC; Kouri DJ
    J Phys Chem A; 2013 Apr; 117(16):3449-57. PubMed ID: 23531036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pinning control of fractional-order weighted complex networks.
    Tang Y; Wang Z; Fang JA
    Chaos; 2009 Mar; 19(1):013112. PubMed ID: 19334976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.