These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 24089761)
1. Frozen rotor approximation in the mixed quantum/classical theory for collisional energy transfer: application to ozone stabilization. Teplukhin A; Ivanov M; Babikov D J Chem Phys; 2013 Sep; 139(12):124301. PubMed ID: 24089761 [TBL] [Abstract][Full Text] [Related]
2. Mixed quantum-classical theory for the collisional energy transfer and the rovibrational energy flow: application to ozone stabilization. Ivanov MV; Babikov D J Chem Phys; 2011 Apr; 134(14):144107. PubMed ID: 21495742 [TBL] [Abstract][Full Text] [Related]
3. Collisional stabilization of van der Waals states of ozone. Ivanov MV; Babikov D J Chem Phys; 2011 May; 134(17):174308. PubMed ID: 21548688 [TBL] [Abstract][Full Text] [Related]
4. Equivalence of the Ehrenfest theorem and the fluid-rotor model for mixed quantum∕classical theory of collisional energy transfer. Semenov A; Babikov D J Chem Phys; 2013 Apr; 138(16):164110. PubMed ID: 23635114 [TBL] [Abstract][Full Text] [Related]
5. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation. Ivanov MV; Babikov D J Chem Phys; 2012 May; 136(18):184304. PubMed ID: 22583284 [TBL] [Abstract][Full Text] [Related]
6. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H₂O + He system. Semenov A; Dubernet ML; Babikov D J Chem Phys; 2014 Sep; 141(11):114304. PubMed ID: 25240355 [TBL] [Abstract][Full Text] [Related]
7. Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments. Semenov A; Babikov D J Phys Chem Lett; 2015 May; 6(10):1854-8. PubMed ID: 26263260 [TBL] [Abstract][Full Text] [Related]
8. Ro-vibrational quenching of CO (v = 1) by He impact in a broad range of temperatures: A benchmark study using mixed quantum/classical inelastic scattering theory. Semenov A; Ivanov M; Babikov D J Chem Phys; 2013 Aug; 139(7):074306. PubMed ID: 23968091 [TBL] [Abstract][Full Text] [Related]
9. Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms. Song L; Balakrishnan N; van der Avoird A; Karman T; Groenenboom GC J Chem Phys; 2015 May; 142(20):204303. PubMed ID: 26026443 [TBL] [Abstract][Full Text] [Related]
10. Rotational quenching of H2O by He: mixed quantum/classical theory and comparison with quantum results. Ivanov M; Dubernet ML; Babikov D J Chem Phys; 2014 Apr; 140(13):134301. PubMed ID: 24712787 [TBL] [Abstract][Full Text] [Related]
11. Mixed Quantum/Classical Theory for Molecule-Molecule Inelastic Scattering: Derivations of Equations and Application to N2 + H2 System. Semenov A; Babikov D J Phys Chem A; 2015 Dec; 119(50):12329-38. PubMed ID: 26323089 [TBL] [Abstract][Full Text] [Related]
12. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory. Semenov A; Babikov D J Phys Chem Lett; 2014 Jan; 5(2):275-8. PubMed ID: 26270699 [TBL] [Abstract][Full Text] [Related]
13. Communication: the rotational excitation of D2 by H: on the importance of the reactive channels. Lique F; Faure A J Chem Phys; 2012 Jan; 136(3):031101. PubMed ID: 22280736 [TBL] [Abstract][Full Text] [Related]
14. Mixed quantum/classical calculations of total and differential elastic and rotationally inelastic scattering cross sections for light and heavy reduced masses in a broad range of collision energies. Semenov A; Babikov D J Chem Phys; 2014 Jan; 140(4):044306. PubMed ID: 25669522 [TBL] [Abstract][Full Text] [Related]
15. The role of rotation in the vibrational relaxation of water by hydrogen molecules. Faure A; Wiesenfeld L; Wernli M; Valiron P J Chem Phys; 2005 Sep; 123(10):104309. PubMed ID: 16178599 [TBL] [Abstract][Full Text] [Related]
16. Vibrationally inelastic collisions in H+ +CO system: comparing quantum calculations with experiments. Kumar TJ; Kumar S J Chem Phys; 2004 Jul; 121(1):191-203. PubMed ID: 15260537 [TBL] [Abstract][Full Text] [Related]
17. Communication: Rotational excitation of HCl by H: Rigid rotor vs. reactive approaches. Lique F J Chem Phys; 2015 Jun; 142(24):241102. PubMed ID: 26133402 [TBL] [Abstract][Full Text] [Related]
18. MQCT. I. Inelastic Scattering of Two Asymmetric-Top Rotors with Application to H Semenov A; Babikov D J Phys Chem A; 2017 Jul; 121(26):4855-4867. PubMed ID: 28581295 [TBL] [Abstract][Full Text] [Related]
19. Collisional energy transfer probability densities P(E, J; E', J') for monatomics colliding with large molecules. Barker JR; Weston RE J Phys Chem A; 2010 Oct; 114(39):10619-33. PubMed ID: 20843047 [TBL] [Abstract][Full Text] [Related]
20. Ultracold collisions of O(1D) and H2: the effects of H2 vibrational excitation on the production of vibrationally and rotationally excited OH. Pradhan GB; Balakrishnan N; Kendrick BK J Chem Phys; 2013 Apr; 138(16):164310. PubMed ID: 23635141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]