BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24089784)

  • 1. Molecular simulation of aqueous electrolytes: water chemical potential results and Gibbs-Duhem equation consistency tests.
    Moučka F; Nezbeda I; Smith WR
    J Chem Phys; 2013 Sep; 139(12):124505. PubMed ID: 24089784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.
    Moučka F; Nezbeda I; Smith WR
    J Chem Theory Comput; 2015 Apr; 11(4):1756-64. PubMed ID: 26574385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl.
    Moučka F; Lísal M; Škvor J; Jirsák J; Nezbeda I; Smith WR
    J Phys Chem B; 2011 Jun; 115(24):7849-61. PubMed ID: 21627127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations.
    Moučka F; Nezbeda I; Smith WR
    J Chem Phys; 2013 Apr; 138(15):154102. PubMed ID: 23614407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures.
    Cochrane TT; Cochrane TA
    Med Phys; 2016 Jan; 43(1):225. PubMed ID: 26745915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid.
    Moučka F; Lísal M; Smith WR
    J Phys Chem B; 2012 May; 116(18):5468-78. PubMed ID: 22475081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent activity in electrolyte solutions from molecular simulation of the osmotic pressure.
    Kohns M; Reiser S; Horsch M; Hasse H
    J Chem Phys; 2016 Feb; 144(8):084112. PubMed ID: 26931686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulations of aqueous electrolyte solubility: 1. The expanded-ensemble osmotic molecular dynamics method for the solution phase.
    Lísal M; Smith WR; Kolafa J
    J Phys Chem B; 2005 Jul; 109(26):12956-65. PubMed ID: 16852608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extension of the Gibbs-Duhem Equation to the Partial Molar Surface Thermodynamic Properties of Solutions.
    Vegh A; Korozs J; Kaptay G
    Langmuir; 2022 Apr; 38(16):4906-4912. PubMed ID: 35420831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmotic coefficient of aqueous solutions of cyclohexylsulfamic Acid at the freezing point of solutions.
    Bešter-Rogač M; Klofutar C; Rudan-Tasič D
    Acta Chim Slov; 2010 Dec; 57(4):849-54. PubMed ID: 24061887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubility of CO
    Wasik DO; Polat HM; Ramdin M; Moultos OA; Calero S; Vlugt TJH
    J Phys Chem C Nanomater Interfaces; 2022 Nov; 126(45):19424-19434. PubMed ID: 36424997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gibbs-Duhem-based relationships among derivatives expressing the concentration dependences of selected chemical potentials for a multicomponent system.
    Anderson CF; Record MT
    Biophys Chem; 2004 Dec; 112(2-3):165-75. PubMed ID: 15572244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route.
    Benavides AL; Aragones JL; Vega C
    J Chem Phys; 2016 Mar; 144(12):124504. PubMed ID: 27036458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations.
    Mester Z; Panagiotopoulos AZ
    J Chem Phys; 2015 Jan; 142(4):044507. PubMed ID: 25637995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Force Field Development for Aqueous Electrolytes: 1. Incorporating Appropriate Experimental Data and the Inadequacy of Simple Electrolyte Force Fields Based on Lennard-Jones and Point Charge Interactions with Lorentz-Berthelot Rules.
    Moučka F; Nezbeda I; Smith WR
    J Chem Theory Comput; 2013 Nov; 9(11):5076-85. PubMed ID: 26583422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility of drugs in aqueous solutions. Part 5. Thermodynamic consistency test for the solubility data.
    Ruckenstein E; Shulgin I
    Int J Pharm; 2005 Mar; 292(1-2):87-94. PubMed ID: 15725556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solubility of KF and NaCl in water by molecular simulation.
    Sanz E; Vega C
    J Chem Phys; 2007 Jan; 126(1):014507. PubMed ID: 17212500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion-specific thermodynamics of multicomponent electrolytes: a hybrid HNC/MD approach.
    Vrbka L; Lund M; Kalcher I; Dzubiella J; Netz RR; Kunz W
    J Chem Phys; 2009 Oct; 131(15):154109. PubMed ID: 20568849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.