These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 24089862)
1. Design and characterization of a nano-Newton resolution thrust stand. Soni J; Roy S Rev Sci Instrum; 2013 Sep; 84(9):095103. PubMed ID: 24089862 [TBL] [Abstract][Full Text] [Related]
2. A 10 nN resolution thrust-stand for micro-propulsion devices. Chakraborty S; Courtney DG; Shea H Rev Sci Instrum; 2015 Nov; 86(11):115109. PubMed ID: 26628174 [TBL] [Abstract][Full Text] [Related]
3. A microNewton thrust stand for average thrust measurement of pulsed microthruster. Zhou WJ; Hong YJ; Chang H Rev Sci Instrum; 2013 Dec; 84(12):125115. PubMed ID: 24387476 [TBL] [Abstract][Full Text] [Related]
4. A torsional sub-milli-Newton thrust balance based on a spring leaf strain gauge sensor. Frieler T; Groll R Rev Sci Instrum; 2018 Jul; 89(7):075101. PubMed ID: 30068111 [TBL] [Abstract][Full Text] [Related]
5. A compound pendulum for thrust measurement of micro-Newton thruster. Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050 [TBL] [Abstract][Full Text] [Related]
6. Thrust stand for vertically oriented electric propulsion performance evaluation. Moeller T; Polzin KA Rev Sci Instrum; 2010 Nov; 81(11):115108. PubMed ID: 21133502 [TBL] [Abstract][Full Text] [Related]
7. Precision electromagnetic calibration technique for micro-Newton thrust stands. He Z; Wu J; Zhang D; Lu G; Liu Z; Zhang R Rev Sci Instrum; 2013 May; 84(5):055107. PubMed ID: 23742589 [TBL] [Abstract][Full Text] [Related]
8. A torsional thrust balance with asymmetrical configuration for microthruster performance evaluation. Wang Y; Ge C; Cheng L; Ding W; Geng J Rev Sci Instrum; 2019 Jul; 90(7):076111. PubMed ID: 31370499 [TBL] [Abstract][Full Text] [Related]
9. A torsion balance for impulse and thrust measurements of micro-Newton thrusters. Yang YX; Tu LC; Yang SQ; Luo J Rev Sci Instrum; 2012 Jan; 83(1):015105. PubMed ID: 22299984 [TBL] [Abstract][Full Text] [Related]
10. Design and performance of a nano-Newton torsion balance. Kößling M; Tajmar M Rev Sci Instrum; 2022 Jul; 93(7):074502. PubMed ID: 35922322 [TBL] [Abstract][Full Text] [Related]
12. Development and analysis of a novel printed circuit board electrostatic comb system for micro-newton thrust stand calibration. Wang Y; Ding W; Cheng L; Li Y; Ge C; Han R; Yan J; Zhao Z; Sun A Rev Sci Instrum; 2018 Jul; 89(7):075104. PubMed ID: 30068098 [TBL] [Abstract][Full Text] [Related]
16. Dual-axis thrust stand for the direct characterization of electrospray performance. Gilpin MR; McGehee WA; Arnold NI; Natisin MR; Holley ZA Rev Sci Instrum; 2022 Jun; 93(6):065102. PubMed ID: 35778016 [TBL] [Abstract][Full Text] [Related]
17. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters. Wong AR; Toftul A; Polzin KA; Pearson JB Rev Sci Instrum; 2012 Feb; 83(2):025103. PubMed ID: 22380121 [TBL] [Abstract][Full Text] [Related]
18. Direct measurement of 1-mN-class thrust and 100-s-class specific impulse for a CubeSat propulsion system. Asakawa J; Nishii K; Nakagawa Y; Koizumi H; Komurasaki K Rev Sci Instrum; 2020 Mar; 91(3):035116. PubMed ID: 32260002 [TBL] [Abstract][Full Text] [Related]
19. A method for evaluating the thrust of a space propulsion device with wide range time variations using a disturbance observer. Kakami A; Muto T; Yano Y; Tachibana T Rev Sci Instrum; 2015 Nov; 86(11):115114. PubMed ID: 26628179 [TBL] [Abstract][Full Text] [Related]
20. Comparison of electrostatic fins with piezoelectric impact hammer techniques to extend impulse calibration range of a torsional thrust stand. Pancotti AP; Gilpin M; Hilario MS Rev Sci Instrum; 2012 Mar; 83(3):035109. PubMed ID: 22462962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]