These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 24089885)

  • 1. Note: Comparative experimental studies on the performance of 2-2 piezocomposite for medical ultrasound transducers.
    Marinozzi F; Bini F; Biagioni A; Grandoni A; Spicci L
    Rev Sci Instrum; 2013 Sep; 84(9):096110. PubMed ID: 24089885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabrication of electrode patterns for high-frequency ultrasound transducer arrays.
    Bernassau AL; García-Gancedo L; Hutson D; Démoré CE; McAneny JJ; Button TW; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1820-9. PubMed ID: 22899129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosstalk reduction for high-frequency linear-array ultrasound transducers using 1-3 piezocomposites with pseudo-random pillars.
    Yang HC; Cannata J; Williams J; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2312-21. PubMed ID: 23143580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):961-71. PubMed ID: 18238501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of annular thickness mode piezoelectric micro ultrasonic transducers.
    Dorey RA; Dauchy F; Wang D; Berriet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2462-8. PubMed ID: 18276538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer.
    Azuma T; Ogihara M; Kubota J; Sasaki A; Umemura S; Furuhata H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1211-24. PubMed ID: 20442033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplex ultrasound scanners.
    Health Devices; 1999 Apr; 28(4):124-63. PubMed ID: 10320952
    [No Abstract]   [Full Text] [Related]  

  • 12. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
    Dausch DE; Castellucci JB; Chou DR; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2484-92. PubMed ID: 19049928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20-80 MHz) transducers.
    Foster FS; Ryan LK; Turnbull DH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):446-53. PubMed ID: 18267606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible ultrasonic transducers incorporating piezoelectric fibres.
    Harvey G; Gachagan A; Mackersie JW; McCunnie T; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1999-2009. PubMed ID: 19812003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lead Zirconate Titanate Transducers Embedded in Composite Laminates: The Influence of the Integration Method on Ultrasound Transduction.
    Kergosien N; Gavérina L; Ribay G; Saffar F; Beauchêne P; Mesnil O; Bareille O
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into the effects of modification of the passive phase for improved manufacture of 1-3 connectivity piezocomposite transducers.
    O'Leary RL; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):511-6. PubMed ID: 18238451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and finite element modelling studies on single-layer and multi-layer 1-3 piezocomposite transducers.
    Ramesh R; Prasad CD; Kumar TK; Gavane LA; Vishnubhatla RM
    Ultrasonics; 2006 Nov; 44(4):341-9. PubMed ID: 16890265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single crystal PZN/PT-polymer composites for ultrasound transducer applications.
    Ritter T; Geng X; Kirk Shung K; Lopath PD; Park SE; Shrout TR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):792-800. PubMed ID: 18238611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T; Nguyen AT; Johansen TF; Hoff L
    Ultrasonics; 2014 Feb; 54(2):614-20. PubMed ID: 24041498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.