These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24089963)

  • 1. Universal fractional map and cascade of bifurcations type attractors.
    Edelman M
    Chaos; 2013 Sep; 23(3):033127. PubMed ID: 24089963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term memory contribution as applied to the motion of discrete dynamical systems.
    Stanislavsky AA
    Chaos; 2006 Dec; 16(4):043105. PubMed ID: 17199383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caputo standard α-family of maps: fractional difference vs. fractional.
    Edelman M
    Chaos; 2014 Jun; 24(2):023137. PubMed ID: 24985451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems.
    Chen L; Chai Y; Wu R
    Chaos; 2011 Dec; 21(4):043107. PubMed ID: 22225344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of the chain of forced oscillators with long-range interaction: from synchronization to chaos.
    Zaslavsky GM; Edelman M; Tarasov VE
    Chaos; 2007 Dec; 17(4):043124. PubMed ID: 18163788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional dynamics of coupled oscillators with long-range interaction.
    Tarasov VE; Zaslavsky GM
    Chaos; 2006 Jun; 16(2):023110. PubMed ID: 16822013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model.
    Dtchetgnia Djeundam SR; Yamapi R; Kofane TC; Aziz-Alaoui MA
    Chaos; 2013 Sep; 23(3):033125. PubMed ID: 24089961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new route to chaos: sequences of topological torus bifurcations.
    Spears BK; Szeri AJ
    Chaos; 2005 Sep; 15(3):33108. PubMed ID: 16252982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic and pseudochaotic attractors of perturbed fractional oscillator.
    Zaslavsky GM; Stanislavsky AA; Edelman M
    Chaos; 2006 Mar; 16(1):013102. PubMed ID: 16599733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dynamics and chaos in fractional-order neural networks.
    Kaslik E; Sivasundaram S
    Neural Netw; 2012 Aug; 32():245-56. PubMed ID: 22386788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional dissipative standard map.
    Tarasov VE; Edelman M
    Chaos; 2010 Jun; 20(2):023127. PubMed ID: 20590323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry chaotic attractors and bursting dynamics of semiconductor lasers subjected to optical injection.
    Mengue AD; Essimbi BZ
    Chaos; 2012 Mar; 22(1):013113. PubMed ID: 22462989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-stability and α-synchronization for fractional-order neural networks.
    Yu J; Hu C; Jiang H
    Neural Netw; 2012 Nov; 35():82-7. PubMed ID: 22954481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of chaos systems described by nonlinear fractional-order polytopic differential inclusion.
    Balochian S; Sedigh AK
    Chaos; 2012 Mar; 22(1):013120. PubMed ID: 22462996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous border-collision and period-doubling bifurcations.
    Simpson DJ; Meiss JD
    Chaos; 2009 Sep; 19(3):033146. PubMed ID: 19792026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational resonance in Duffing systems with fractional-order damping.
    Yang JH; Zhu H
    Chaos; 2012 Mar; 22(1):013112. PubMed ID: 22462988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strange nonchaotic attractors in Harper maps.
    Haro A; Puig J
    Chaos; 2006 Sep; 16(3):033127. PubMed ID: 17014232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superdiffusion in the dissipative standard map.
    Zaslavsky GM; Edelman M
    Chaos; 2008 Sep; 18(3):033116. PubMed ID: 19045454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos.
    Innocenti G; Morelli A; Genesio R; Torcini A
    Chaos; 2007 Dec; 17(4):043128. PubMed ID: 18163792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merger of coherent structures in time-periodic viscous flows.
    Speetjens MF; Clercx HJ; van Heijst GJ
    Chaos; 2006 Dec; 16(4):043104. PubMed ID: 17199382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.