BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24090105)

  • 1. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.).
    Nogueira FC; Palmisano G; Schwämmle V; Soares EL; Soares AA; Roepstorff P; Domont GB; Campos FA
    J Proteome Res; 2013 Nov; 12(11):5012-24. PubMed ID: 24090105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of isobaric and isotopic labeling in quantitative plant proteomics.
    Nogueira FC; Palmisano G; Schwämmle V; Campos FA; Larsen MR; Domont GB; Roepstorff P
    J Proteome Res; 2012 May; 11(5):3046-52. PubMed ID: 22452248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development.
    Nogueira FC; Palmisano G; Soares EL; Shah M; Soares AA; Roepstorff P; Campos FA; Domont GB
    J Proteomics; 2012 Mar; 75(6):1933-9. PubMed ID: 22266101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Proteomic Analysis of Castor (
    Wang X; Li M; Liu X; Zhang L; Duan Q; Zhang J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forensic applications of light-element stable isotope ratios of Ricinus communis seeds and ricin preparations.
    Kreuzer HW; West JB; Ehleringer JR
    J Forensic Sci; 2013 Jan; 58 Suppl 1():S43-51. PubMed ID: 23130759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and sensitive assay for distinguishing the expression of ricin and Ricinus communis agglutinin genes in developing castor seed (R. communis L.).
    Chen GQ; He X; McKeon TA
    J Agric Food Chem; 2005 Mar; 53(6):2358-61. PubMed ID: 15769181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Components of complex lipid biosynthetic pathways in developing castor (Ricinus communis) seeds identified by MudPIT analysis of enriched endoplasmic reticulum.
    Brown AP; Kroon JT; Topping JF; Robson JL; Simon WJ; Slabas AR
    J Proteome Res; 2011 Aug; 10(8):3565-77. PubMed ID: 21657795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.
    Houston NL; Hajduch M; Thelen JJ
    Plant Physiol; 2009 Oct; 151(2):857-68. PubMed ID: 19675154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.
    Barvkar VT; Pardeshi VC; Kale SM; Kadoo NY; Giri AP; Gupta VS
    J Proteome Res; 2012 Dec; 11(12):6264-76. PubMed ID: 23153172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial expression of 2S albumin in castor (Ricinus communis L.).
    Ahn YJ; Chen GQ
    J Agric Food Chem; 2007 Nov; 55(24):10043-9. PubMed ID: 17960884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop.
    Zhang Y; Mulpuri S; Liu A
    Photosynth Res; 2016 May; 128(2):125-40. PubMed ID: 26589321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum.
    Maltman DJ; Gadd SM; Simon WJ; Slabas AR
    Proteomics; 2007 May; 7(9):1513-28. PubMed ID: 17407185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-course proteome analysis of developing extrafloral nectaries of Ricinus communis.
    Shah M; Teixeira FM; Soares EL; Soares AA; Carvalho PC; Domont GB; Thornburg RW; Nogueira FC; Campos FA
    Proteomics; 2016 Feb; 16(4):629-33. PubMed ID: 26683443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed.
    Kottapalli KR; Zabet-Moghaddam M; Rowland D; Faircloth W; Mirzaei M; Haynes PA; Payton P
    J Proteome Res; 2013 Nov; 12(11):5048-57. PubMed ID: 24094305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the 11S globulin gene family in the castor plant Ricinus communis L.
    Chileh T; Esteban-García B; Alonso DL; García-Maroto F
    J Agric Food Chem; 2010 Jan; 58(1):272-81. PubMed ID: 19908832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.
    Kim HU; Lee KR; Go YS; Jung JH; Suh MC; Kim JB
    Plant Cell Physiol; 2011 Jun; 52(6):983-93. PubMed ID: 21659329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods.
    Wunschel DS; Melville AM; Ehrhardt CJ; Colburn HA; Victry KD; Antolick KC; Wahl JH; Wahl KL
    Analyst; 2012 May; 137(9):2077-85. PubMed ID: 22416271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational identification and phylogenetic analysis of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax.
    Hyun TK; Kumar D; Cho YY; Hyun HN; Kim JS
    Gene; 2013 Feb; 515(2):454-60. PubMed ID: 23232356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed proteomics.
    Miernyk JA; Hajduch M
    J Proteomics; 2011 Apr; 74(4):389-400. PubMed ID: 21172463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome analysis of plastids from developing seeds of Jatropha curcas L.
    Pinheiro CB; Shah M; Soares EL; Nogueira FC; Carvalho PC; Junqueira M; Araújo GD; Soares AA; Domont GB; Campos FA
    J Proteome Res; 2013 Nov; 12(11):5137-45. PubMed ID: 24032481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.