BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 24090187)

  • 1. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles.
    An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA
    J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.
    Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD
    Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic decomposition of N2O on ordered crystalline metal oxides.
    Ma Z; Ren Y; Lu Y; Bruce PG
    J Nanosci Nanotechnol; 2013 Jul; 13(7):5093-103. PubMed ID: 23901535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WGS catalysis and in situ studies of CoO(1-x), PtCo(n)/Co3O4, and Pt(m)Co(m')/CoO(1-x) nanorod catalysts.
    Zhang S; Shan JJ; Zhu Y; Frenkel AI; Patlolla A; Huang W; Yoon SJ; Wang L; Yoshida H; Takeda S; Tao FF
    J Am Chem Soc; 2013 Jun; 135(22):8283-93. PubMed ID: 23611190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane.
    An K; Alayoglu S; Musselwhite N; Na K; Somorjai GA
    J Am Chem Soc; 2014 May; 136(19):6830-3. PubMed ID: 24773412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS.
    Jacobs G; Chaney JA; Patterson PM; Das TK; Maillot JC; Davis BH
    J Synchrotron Radiat; 2004 Sep; 11(Pt 5):414-22. PubMed ID: 15310958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.
    Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ
    Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supported monodisperse Pt nanoparticles from [Pt3(CO)3(μ2-CO)3]5(2-) clusters for investigating support-Pt interface effect in catalysis.
    Chen G; Yang H; Wu B; Zheng Y; Zheng N
    Dalton Trans; 2013 Sep; 42(35):12699-705. PubMed ID: 23732536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO
    Oh S; Ha H; Choi H; Jo C; Cho J; Choi H; Ryoo R; Kim HY; Park JY
    J Chem Phys; 2019 Dec; 151(23):234716. PubMed ID: 31864251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation.
    Mu R; Fu Q; Xu H; Zhang H; Huang Y; Jiang Z; Zhang S; Tan D; Bao X
    J Am Chem Soc; 2011 Feb; 133(6):1978-86. PubMed ID: 21247156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis.
    Fu Q; Yao Y; Guo X; Wei M; Ning Y; Liu H; Yang F; Liu Z; Bao X
    Phys Chem Chem Phys; 2013 Sep; 15(35):14708-14. PubMed ID: 23900259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, chemical composition, and reactivity correlations during the in situ oxidation of 2-propanol.
    Paredis K; Ono LK; Mostafa S; Li L; Zhang Z; Yang JC; Barrio L; Frenkel AI; Cuenya BR
    J Am Chem Soc; 2011 May; 133(17):6728-35. PubMed ID: 21469709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of Co₃O₄@CNT with high catalytic activity for CO oxidation under moisture-rich conditions.
    Kuo CH; Li W; Song W; Luo Z; Poyraz AS; Guo Y; Ma AW; Suib SL; He J
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11311-7. PubMed ID: 24960167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysts of self-assembled Pt@CeO
    Wei Y; Jiao J; Zhang X; Jin B; Zhao Z; Xiong J; Li Y; Liu J; Li J
    Nanoscale; 2017 Mar; 9(13):4558-4571. PubMed ID: 28321449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the metal-support interaction on the activity and selectivity of methanol oxidation over Au supported on mesoporous oxides.
    Oh S; Kim YK; Jung CH; Doh WH; Park JY
    Chem Commun (Camb); 2018 Jul; 54(59):8174-8177. PubMed ID: 29946622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential oxidation of carbon monoxide catalyzed by platinum nanoparticles in mesoporous silica.
    Fukuoka A; Kimura J; Oshio T; Sakamoto Y; Ichikawa M
    J Am Chem Soc; 2007 Aug; 129(33):10120-5. PubMed ID: 17663550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.