BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24090213)

  • 1. Directional heat dissipation across the interface in anatase-rutile nanocomposites.
    Xia T; Li N; Zhang Y; Kruger MB; Murowchick J; Selloni A; Chen X
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9883-90. PubMed ID: 24090213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does a photocatalytic synergy in an anatase-rutile TiO2 composite thin-film exist?
    Kafizas A; Carmalt CJ; Parkin IP
    Chemistry; 2012 Oct; 18(41):13048-58. PubMed ID: 22945797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rutile TiO2 nanowires on anatase TiO2 nanofibers: a branched heterostructured photocatalysts via interface-assisted fabrication approach.
    Wang C; Zhang X; Shao C; Zhang Y; Yang J; Sun P; Liu X; Liu H; Liu Y; Xie T; Wang D
    J Colloid Interface Sci; 2011 Nov; 363(1):157-64. PubMed ID: 21820128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application.
    Peng W; Yanagida M; Han L; Ahmed S
    Nanotechnology; 2011 Jul; 22(27):275709. PubMed ID: 21597134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.
    Zhang J; Zhou P; Liu J; Yu J
    Phys Chem Chem Phys; 2014 Oct; 16(38):20382-6. PubMed ID: 25144471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes.
    Wen Y; Liu B; Zeng W; Wang Y
    Nanoscale; 2013 Oct; 5(20):9739-46. PubMed ID: 23963545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dynamics origin of high photocatalytic activity of mixed-phase anatase/rutile TiO
    Wei Y; Tokina MV; Benderskii AV; Zhou Z; Long R; Prezhdo OV
    J Chem Phys; 2020 Jul; 153(4):044706. PubMed ID: 32752673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.
    Wang F; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23941-8. PubMed ID: 26444102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant enhancement of photocatalytic activity of rutile TiO2 compared with anatase TiO2 upon Pt nanoparticle deposition studied by far-ultraviolet spectroscopy.
    Tanabe I; Ryoki T; Ozaki Y
    Phys Chem Chem Phys; 2014 May; 16(17):7749-53. PubMed ID: 24638188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of interfaces and charge trapping sites in photocatalytic mixed-phase TiO2 from first principles modeling.
    Garcia JC; Nolan M; Deskins NA
    J Chem Phys; 2015 Jan; 142(2):024708. PubMed ID: 25591378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile.
    Yan J; Wu G; Guan N; Li L; Li Z; Cao X
    Phys Chem Chem Phys; 2013 Jul; 15(26):10978-88. PubMed ID: 23708180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells.
    Zhao B; Shao G; Fan B; Zhao W; Xie Y; Zhang R
    Phys Chem Chem Phys; 2015 Apr; 17(14):8802-10. PubMed ID: 25745675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.
    Cao F; Xiong J; Wu F; Liu Q; Shi Z; Yu Y; Wang X; Li L
    ACS Appl Mater Interfaces; 2016 May; 8(19):12239-45. PubMed ID: 27136708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N3-dye-induced visible laser anatase-to-rutile phase transition on mesoporous TiO2 films.
    Parussulo AL; Huila MF; Araki K; Toma HE
    Langmuir; 2011 Aug; 27(15):9094-9. PubMed ID: 21707061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of Photocatalytic Performance by Building Multiple Heterojunction Structures of Anatase-Rutile/BiOI Composite Fibers.
    Li D; Xu K; Zhang C
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band alignment and interfacial charge transfer in sol-gel derived anatase/rutile heterophase TiO
    A V N; V M A; V B
    Phys Chem Chem Phys; 2024 May; 26(18):13937-13948. PubMed ID: 38668752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities.
    Kandiel TA; Robben L; Alkaim A; Bahnemann D
    Photochem Photobiol Sci; 2013 Apr; 12(4):602-9. PubMed ID: 22945758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment.
    Moritz N; Areva S; Wolke J; Peltola T
    Biomaterials; 2005 Jul; 26(21):4460-7. PubMed ID: 15701375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.