These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24090276)

  • 21. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.
    Fromme JC; Banerjee A; Huang SJ; Verdine GL
    Nature; 2004 Feb; 427(6975):652-6. PubMed ID: 14961129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
    Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA
    Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1.
    Kuznetsov NA; Koval VV; Fedorova OS
    Biochemistry (Mosc); 2011 Jan; 76(1):118-30. PubMed ID: 21568844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
    Banerjee A; Yang W; Karplus M; Verdine GL
    Nature; 2005 Mar; 434(7033):612-8. PubMed ID: 15800616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Lingaraju GM; Prota AE; Winkler FK
    DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase.
    Votaw KA; McCullagh M
    J Phys Chem B; 2019 Jan; 123(1):95-105. PubMed ID: 30525620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural biology: DNA search and rescue.
    David SS
    Nature; 2005 Mar; 434(7033):569-70. PubMed ID: 15800603
    [No Abstract]   [Full Text] [Related]  

  • 28. Structure of a DNA glycosylase searching for lesions.
    Banerjee A; Santos WL; Verdine GL
    Science; 2006 Feb; 311(5764):1153-7. PubMed ID: 16497933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular biology: ensuring error-free DNA repair.
    Lindahl T
    Nature; 2004 Feb; 427(6975):598. PubMed ID: 14961108
    [No Abstract]   [Full Text] [Related]  

  • 30. A nucleobase lesion remodels the interaction of its normal neighbor in a DNA glycosylase complex.
    Banerjee A; Verdine GL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15020-5. PubMed ID: 17015827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization.
    Lenz SA; Wetmore SD
    Biochemistry; 2016 Feb; 55(5):798-808. PubMed ID: 26765542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase.
    Bjørås M; Seeberg E; Luna L; Pearl LH; Barrett TE
    J Mol Biol; 2002 Mar; 317(2):171-7. PubMed ID: 11902834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interrogator.
    Montoya M
    Nat Struct Mol Biol; 2005 Apr; 12(4):284. PubMed ID: 15809645
    [No Abstract]   [Full Text] [Related]  

  • 34. Mechanistic and conformational flexibility of the covalent linkage formed during β-lyase activity on an AP-site: application to hOgg1.
    Kellie JL; Wetmore SD
    J Phys Chem B; 2012 Sep; 116(35):10786-97. PubMed ID: 22877319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site.
    O'Brien PJ; Ellenberger T
    J Biol Chem; 2004 Jun; 279(26):26876-84. PubMed ID: 15126496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases.
    Woods RD; O'Shea VL; Chu A; Cao S; Richards JL; Horvath MP; David SS
    Nucleic Acids Res; 2016 Jan; 44(2):801-10. PubMed ID: 26673696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA Deformation-Coupled Recognition of 8-Oxoguanine: Conformational Kinetic Gating in Human DNA Glycosylase.
    Li H; Endutkin AV; Bergonzo C; Fu L; Grollman A; Zharkov DO; Simmerling C
    J Am Chem Soc; 2017 Feb; 139(7):2682-2692. PubMed ID: 28098999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AP-Endonuclease 1 Accelerates Turnover of Human 8-Oxoguanine DNA Glycosylase by Preventing Retrograde Binding to the Abasic-Site Product.
    Esadze A; Rodriguez G; Cravens SL; Stivers JT
    Biochemistry; 2017 Apr; 56(14):1974-1986. PubMed ID: 28345889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase.
    Faucher F; Wallace SS; Doublié S
    DNA Repair (Amst); 2009 Nov; 8(11):1283-9. PubMed ID: 19747886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects.
    Parikh SS; Walcher G; Jones GD; Slupphaug G; Krokan HE; Blackburn GM; Tainer JA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5083-8. PubMed ID: 10805771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.