BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24090499)

  • 1. InsertionMapper: a pipeline tool for the identification of targeted sequences from multidimensional high throughput sequencing data.
    Xiong W; He L; Li Y; Dooner HK; Du C
    BMC Genomics; 2013 Oct; 14():679. PubMed ID: 24090499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-Effective Profiling of Mutator Transposon Insertions in Maize by Next-Generation Sequencing.
    Zhang X; Zhao M; Lisch D
    Methods Mol Biol; 2020; 2072():39-50. PubMed ID: 31541437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development.
    Lv Y; Liu Y; Zhao H
    BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using next generation sequence.
    Blanca JM; Pascual L; Ziarsolo P; Nuez F; Cañizares J
    BMC Genomics; 2011 Jun; 12():285. PubMed ID: 21635747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational prediction and molecular confirmation of Helitron transposons in the maize genome.
    Du C; Caronna J; He L; Dooner HK
    BMC Genomics; 2008 Jan; 9():51. PubMed ID: 18226261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of T-DNA Insertion Site and Flanking Sequence of a Genetically Modified Maize Event IE09S034 Using Next-Generation Sequencing Technology.
    Siddique K; Wei J; Li R; Zhang D; Shi J
    Mol Biotechnol; 2019 Sep; 61(9):694-702. PubMed ID: 31256331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mu-seq: sequence-based mapping and identification of transposon induced mutations.
    McCarty DR; Latshaw S; Wu S; Suzuki M; Hunter CT; Avigne WT; Koch KE
    PLoS One; 2013; 8(10):e77172. PubMed ID: 24194867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposome: a toolkit for annotation of transposable element families from unassembled sequence reads.
    Staton SE; Burke JM
    Bioinformatics; 2015 Jun; 31(11):1827-9. PubMed ID: 25644271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClinQC: a tool for quality control and cleaning of Sanger and NGS data in clinical research.
    Pandey RV; Pabinger S; Kriegner A; Weinhäusel A
    BMC Bioinformatics; 2016 Feb; 17():56. PubMed ID: 26830926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of high-copy insertion sites in maize.
    Settles AM; Latshaw S; McCarty DR
    Nucleic Acids Res; 2004 Apr; 32(6):e54. PubMed ID: 15060129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Transposition Events from Next-Generation Sequencing Data.
    Miyao A
    Methods Mol Biol; 2021; 2250():123-129. PubMed ID: 33900599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition.
    Muraya MM; Schmutzer T; Ulpinnis C; Scholz U; Altmann T
    PLoS One; 2015; 10(7):e0132120. PubMed ID: 26151830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time.
    Jamann TM; Sood S; Wisser RJ; Holland JB
    PLoS One; 2017; 12(1):e0168910. PubMed ID: 28045987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TE-Tracker: systematic identification of transposition events through whole-genome resequencing.
    Gilly A; Etcheverry M; Madoui MA; Guy J; Quadrana L; Alberti A; Martin A; Heitkam T; Engelen S; Labadie K; Le Pen J; Wincker P; Colot V; Aury JM
    BMC Bioinformatics; 2014 Nov; 15(1):377. PubMed ID: 25408240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The maize W22 genome provides a foundation for functional genomics and transposon biology.
    Springer NM; Anderson SN; Andorf CM; Ahern KR; Bai F; Barad O; Barbazuk WB; Bass HW; Baruch K; Ben-Zvi G; Buckler ES; Bukowski R; Campbell MS; Cannon EKS; Chomet P; Dawe RK; Davenport R; Dooner HK; Du LH; Du C; Easterling KA; Gault C; Guan JC; Hunter CT; Jander G; Jiao Y; Koch KE; Kol G; Köllner TG; Kudo T; Li Q; Lu F; Mayfield-Jones D; Mei W; McCarty DR; Noshay JM; Portwood JL; Ronen G; Settles AM; Shem-Tov D; Shi J; Soifer I; Stein JC; Stitzer MC; Suzuki M; Vera DL; Vollbrecht E; Vrebalov JT; Ware D; Wei S; Wimalanathan K; Woodhouse MR; Xiong W; Brutnell TP
    Nat Genet; 2018 Sep; 50(9):1282-1288. PubMed ID: 30061736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Method for Bioinformatic Analysis of Transposon Insertion Sequencing (INSeq) Results for Identification of Microbial Fitness Determinants.
    Wang N; Ozer EA
    Methods Mol Biol; 2017; 1498():243-253. PubMed ID: 27709580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data.
    Jiang C; Chen C; Huang Z; Liu R; Verdier J
    BMC Bioinformatics; 2015 Mar; 16(1):72. PubMed ID: 25887332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNP discovery by transcriptome pyrosequencing.
    Barbazuk WB; Schnable PS
    Methods Mol Biol; 2011; 729():225-46. PubMed ID: 21365494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated pipeline for detection of sex linked genes using RNA-Seq data.
    Michalovova M; Kubat Z; Hobza R; Vyskot B; Kejnovsky E
    BMC Bioinformatics; 2015 Mar; 16(1):78. PubMed ID: 25884927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.