BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24090609)

  • 41. Kinetic analysis of denitrification coupled with Cd(II) removal by Cupriavidus sp. CC1 and its removal mechanism.
    Su JF; Xue L; Huang TL; Wang Z; Wang JX
    Res Microbiol; 2019; 170(4-5):214-221. PubMed ID: 31108202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water.
    Peng L; Qin P; Lei M; Zeng Q; Song H; Yang J; Shao J; Liao B; Gu J
    J Hazard Mater; 2012 Mar; 209-210():193-8. PubMed ID: 22321856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The denitration pathway of p-nitrophenol in the hydrogen peroxide catalytic oxidation with an Fe(III)-resin catalyst.
    Liou RM
    Water Sci Technol; 2012; 65(5):845-58. PubMed ID: 22339019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of piperazine by Paracoccus sp. TOH isolated from activated sludge.
    Cai S; Li X; Cai T; He J
    Bioresour Technol; 2013 Feb; 130():536-42. PubMed ID: 23334008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media.
    Li M; Pokhrel S; Jin X; Mädler L; Damoiseaux R; Hoek EM
    Environ Sci Technol; 2011 Jan; 45(2):755-61. PubMed ID: 21133426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrate levels modulate the abundance of Paracoccus sp. in a biofilm community.
    Singh S; Nerurkar AS; Srinandan CS
    World J Microbiol Biotechnol; 2015 Jun; 31(6):951-8. PubMed ID: 25838197
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential electron donor for nanoiron supported hydrogenotrophic denitrification: H
    Xu C; Wang X; An Y; Yue J; Zhang R
    Chemosphere; 2018 Jul; 202():644-650. PubMed ID: 29597182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Degradation of scarlet 4BS in aqueous solution using bimetallic Fe/Ni nanoparticles.
    Lin Y; Chen Z; Megharaj M; Naidu R
    J Colloid Interface Sci; 2012 Sep; 381(1):30-5. PubMed ID: 22727406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multifunctional modified polyvinyl alcohol: A powerful biomaterial for enhancing bioreactor performance in nitrate, Mn(II) and Cd(II) removal.
    Su JF; Bai YH; Huang TL; Wei L; Gao CY; Wen Q
    Water Res; 2020 Jan; 168():115152. PubMed ID: 31614240
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Denitrification of nitrate-contaminated groundwater using a simple immobilized activated sludge bioreactor.
    Ye Z; Wang F; Bi H; Wang Z; Liu GH
    Water Sci Technol; 2012; 66(3):517-24. PubMed ID: 22744681
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improvement of water quality through biological denitrification.
    Shivran HS; Kumar D; Singh RV
    J Environ Sci Eng; 2006 Jan; 48(1):57-60. PubMed ID: 17913203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethene reduction in groundwater.
    Chen L; Jin S; Fallgren PH; Liu F; Colberg PJ
    Water Sci Technol; 2013; 67(6):1254-9. PubMed ID: 23508149
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.
    Shi LN; Zhang X; Chen ZL
    Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.
    Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ
    Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. III. Methanol.
    Błaszczyk M; Gałka E; Sakowicz E; Mycielski R
    Acta Microbiol Pol; 1985; 34(2):195-205. PubMed ID: 2412408
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous removal of nitrogen and phosphorus from wastewater by means of FeS-based autotrophic denitrification.
    Li R; Niu J; Zhan X; Liu B
    Water Sci Technol; 2013; 67(12):2761-7. PubMed ID: 23787315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of bacteriophage f2 in water by Fe/Ni nanoparticles: Optimization of Fe/Ni ratio and influencing factors.
    Cheng R; Kang M; Zhuang S; Wang S; Zheng X; Pan X; Shi L; Wang J
    Sci Total Environ; 2019 Feb; 649():995-1003. PubMed ID: 30179827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mineral characterization of the biogenic Fe(III)(hydr)oxides produced during Fe(II)-driven denitrification with Cu, Ni and Zn.
    Kiskira K; Papirio S; Mascolo MC; Fourdrin C; Pechaud Y; van Hullebusch ED; Esposito G
    Sci Total Environ; 2019 Oct; 687():401-412. PubMed ID: 31212147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic dechlorination of Aroclor 1242 by Ni/Fe bimetallic nanoparticles.
    Zhang Z; Hu S; Baig SA; Tang J; Xu X
    J Colloid Interface Sci; 2012 Nov; 385(1):160-5. PubMed ID: 22863064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.