BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 24090964)

  • 41. Movement patterns underlying first trial responses in human balance corrections.
    Tang KS; Honegger F; Allum JH
    Neuroscience; 2012 Dec; 225():140-51. PubMed ID: 22982621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visual and proprioceptive contributions to postural control of upright stance in unilateral vestibulopathy.
    Eysel-Gosepath K; McCrum C; Epro G; Brüggemann GP; Karamanidis K
    Somatosens Mot Res; 2016 Jun; 33(2):72-8. PubMed ID: 27166786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differences between body movement adaptation to calf and neck muscle vibratory proprioceptive stimulation.
    Gomez S; Patel M; Magnusson M; Johansson L; Einarsson EJ; Fransson PA
    Gait Posture; 2009 Jul; 30(1):93-9. PubMed ID: 19398340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulus-dependent changes in the vestibular contribution to human postural control.
    Cenciarini M; Peterka RJ
    J Neurophysiol; 2006 May; 95(5):2733-50. PubMed ID: 16467429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Can a plantar pressure-based tongue-placed electrotactile biofeedback improve postural control under altered vestibular and neck proprioceptive conditions?
    Vuillerme N; Chenu O; Pinsault N; Fleury A; Demongeot J; Payan Y
    Neuroscience; 2008 Jul; 155(1):291-6. PubMed ID: 18597943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vestibular and proprioceptive modulation of postural synergies in normal subjects.
    Allum JH; Honegger F; Schicks H
    J Vestib Res; 1993; 3(1):59-85. PubMed ID: 8275244
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Altered preparatory pelvic control during the sit-to-stance-to-sit movement in people with non-specific low back pain.
    Claeys K; Dankaerts W; Janssens L; Brumagne S
    J Electromyogr Kinesiol; 2012 Dec; 22(6):821-8. PubMed ID: 22595702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees.
    Hof AL; van Bockel RM; Schoppen T; Postema K
    Gait Posture; 2007 Feb; 25(2):250-8. PubMed ID: 16740390
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cross-correlations of center of mass and center of pressure displacements reveal multiple balance strategies in response to sinusoidal platform perturbations.
    Terry K; Gade VK; Allen J; Forrest GF; Barrance P; Edwards WT
    J Biomech; 2011 Jul; 44(11):2066-76. PubMed ID: 21663915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ankle proprioceptive acuity is associated with objective as well as self-report measures of balance, mobility, and physical function.
    Deshpande N; Simonsick E; Metter EJ; Ko S; Ferrucci L; Studenski S
    Age (Dordr); 2016 Jun; 38(3):53. PubMed ID: 27146830
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Is balance normal in migraineurs without history of vertigo?
    Akdal G; Dönmez B; Oztürk V; Angin S
    Headache; 2009 Mar; 49(3):419-25. PubMed ID: 19267786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Postural control in otolith disorders.
    Basta D; Todt I; Scherer H; Clarke A; Ernst A
    Hum Mov Sci; 2005 Apr; 24(2):268-79. PubMed ID: 15953652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensory reweighting of proprioceptive information of the left and right leg during human balance control.
    Pasma JH; Boonstra TA; Campfens SF; Schouten AC; Van der Kooij H
    J Neurophysiol; 2012 Aug; 108(4):1138-48. PubMed ID: 22623486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Age and gymnastic experience effects on sensory reweighting processes during quiet stand.
    Busquets A; Aranda-Garcia S; Ferrer-Uris B; Marina M; Angulo-Barroso R
    Gait Posture; 2018 Jun; 63():177-183. PubMed ID: 29763813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strategies and synergies underlying replacement of vestibular function with prosthetic feedback.
    Honegger F; Hillebrandt IM; van der Elzen NG; Tang KS; Allum JH
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6132-6. PubMed ID: 23367328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Compliant support surfaces affect sensory reweighting during balance control.
    Schut IM; Engelhart D; Pasma JH; Aarts RGKM; Schouten AC
    Gait Posture; 2017 Mar; 53():241-247. PubMed ID: 28231556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of knee rigidity on balance corrections: a comparison with responses of cerebellar ataxia patients.
    Oude Nijhuis LB; Hegeman J; Bakker M; Van Meel M; Bloem BR; Allum JH
    Exp Brain Res; 2008 May; 187(2):181-91. PubMed ID: 18251016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perceptual Aspects of Postural Control: Does Pure Proprioceptive Training Exist?
    Nagy E; Posa G; Finta R; Szilagyi L; Sziver E
    Percept Mot Skills; 2018 Jun; 125(3):581-595. PubMed ID: 29558843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.