These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24090975)

  • 1. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
    McCarty CM; Coffman JA
    Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
    Pieplow A; Dastaw M; Sakuma T; Sakamoto N; Yamamoto T; Yajima M; Oulhen N; Wessel GM
    Dev Biol; 2021 Apr; 472():85-97. PubMed ID: 33482173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase.
    Calestani C; Rogers DJ
    Dev Biol; 2010 Apr; 340(2):249-55. PubMed ID: 20122918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo.
    Kalampoki LG; Flytzanis CN
    PLoS One; 2014; 9(11):e109274. PubMed ID: 25386650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population genetics of cis-regulatory sequences that operate during embryonic development in the sea urchin Strongylocentrotus purpuratus.
    Garfield D; Haygood R; Nielsen WJ; Wray GA
    Evol Dev; 2012; 14(2):152-67. PubMed ID: 23017024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level.
    Voronov D; Paganos P; Magri MS; Cuomo C; Maeso I; Gómez-Skarmeta JL; Arnone MI
    Development; 2024 Aug; 151(16):. PubMed ID: 39058236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions.
    Hammond LM; Hofmann GE
    J Exp Biol; 2012 Jul; 215(Pt 14):2445-54. PubMed ID: 22723484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics.
    Gildor T; Ben-Tabou de-Leon S
    PLoS Genet; 2015 Jul; 11(7):e1005435. PubMed ID: 26230518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, expression, and transcriptional regulation of the Strongylocentrotus franciscanus spec gene family encoding intracellular calcium-binding proteins.
    Villinski JT; Kiyama T; Dayal S; Zhang N; Liang S; Klein WH
    Dev Genes Evol; 2005 Aug; 215(8):410-22. PubMed ID: 15871032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.
    Materna SC; Ransick A; Li E; Davidson EH
    Dev Biol; 2013 Mar; 375(1):92-104. PubMed ID: 23261933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus.
    Tu Q; Cameron RA; Davidson EH
    Dev Biol; 2014 Jan; 385(2):160-7. PubMed ID: 24291147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method, using cis-regulatory control, for blocking embryonic gene expression.
    Smith J; Davidson EH
    Dev Biol; 2008 Jun; 318(2):360-5. PubMed ID: 18423438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptome of the sea urchin embryo.
    Samanta MP; Tongprasit W; Istrail S; Cameron RA; Tu Q; Davidson EH; Stolc V
    Science; 2006 Nov; 314(5801):960-2. PubMed ID: 17095694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information processing at the foxa node of the sea urchin endomesoderm specification network.
    de-Leon SB; Davidson EH
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10103-8. PubMed ID: 20479235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin.
    Annunziata R; Arnone MI
    Development; 2014 Jun; 141(12):2462-72. PubMed ID: 24850857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos.
    Famiglietti AL; Wei Z; Beres TM; Milac AL; Tran DT; Patel D; Angerer RC; Angerer LM; Tabak LA
    PLoS One; 2017; 12(4):e0176479. PubMed ID: 28448610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.