BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 24091182)

  • 1. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
    Lerud KD; Almonte FV; Kim JC; Large EW
    Hear Res; 2014 Feb; 308():41-9. PubMed ID: 24091182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurodynamics, tonality, and the auditory brainstem response.
    Large EW; Almonte FV
    Ann N Y Acad Sci; 2012 Apr; 1252():E1-7. PubMed ID: 22974442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neural Eng; 2009 Dec; 6(6):065003. PubMed ID: 19850978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between speech-evoked auditory brainstem responses and transient evoked otoacoustic emissions.
    Rana B; Barman A
    J Laryngol Otol; 2011 Sep; 125(9):911-6. PubMed ID: 21729428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hearing of modulation in sounds.
    Kay RH
    Physiol Rev; 1982 Jul; 62(3):894-975. PubMed ID: 7045902
    [No Abstract]   [Full Text] [Related]  

  • 6. Pulse-coupled neuron models as investigative tools for musical consonance.
    Heffernan B; Longtin A
    J Neurosci Methods; 2009 Sep; 183(1):95-106. PubMed ID: 19591870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch of structural and functional tonotopy for natural sounds in the auditory midbrain.
    Portfors CV; Roberts PD
    Neuroscience; 2014 Jan; 258():192-203. PubMed ID: 24252321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prior experience biases subcortical sensitivity to sound patterns.
    Skoe E; Krizman J; Spitzer E; Kraus N
    J Cogn Neurosci; 2015 Jan; 27(1):124-40. PubMed ID: 25061926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.
    François C; Schön D
    Hear Res; 2014 Feb; 308():122-8. PubMed ID: 24035820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase locked neural activity in the human brainstem predicts preference for musical consonance.
    Bones O; Hopkins K; Krishnan A; Plack CJ
    Neuropsychologia; 2014 May; 58(100):23-32. PubMed ID: 24690415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds.
    Dewey RS; Francis ST; Guest H; Prendergast G; Millman RE; Plack CJ; Hall DA
    Neuroimage; 2020 Jan; 204():116239. PubMed ID: 31586673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musical experience and neural efficiency: effects of training on subcortical processing of vocal expressions of emotion.
    Strait DL; Kraus N; Skoe E; Ashley R
    Eur J Neurosci; 2009 Feb; 29(3):661-8. PubMed ID: 19222564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
    Junius D; Dau T
    Hear Res; 2005 Jul; 205(1-2):53-67. PubMed ID: 15953515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of auditory brainstem responses in cats: whole brainstem mapping, and a lesion and HRP study of the inferior colliculus.
    Kaga K; Shinoda Y; Suzuki JI
    Acta Otolaryngol; 1997 Mar; 117(2):197-201. PubMed ID: 9105447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The acoustic evoked brainstem potential of the cat. An experimental study.
    Csécsei GI; Klug N
    Acta Biol Hung; 1996; 47(1-4):21-40. PubMed ID: 9123993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel perception.
    Bidelman GM; Alain C
    J Neurosci; 2015 Jan; 35(3):1240-9. PubMed ID: 25609638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectionist networks in auditory system modeling.
    Chittajallu SK; Wong D
    Comput Biol Med; 1994 Nov; 24(6):431-9. PubMed ID: 7789128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling auditory evoked brainstem responses to transient stimuli.
    Rønne FM; Dau T; Harte J; Elberling C
    J Acoust Soc Am; 2012 May; 131(5):3903-13. PubMed ID: 22559366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of complex sounds in the auditory system.
    Nelken I
    Curr Opin Neurobiol; 2008 Aug; 18(4):413-7. PubMed ID: 18805485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative model of subcortical auditory plasticity.
    Chandrasekaran B; Skoe E; Kraus N
    Brain Topogr; 2014 Jul; 27(4):539-52. PubMed ID: 24150692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.