These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 24091373)
1. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: a sensitive excimer signaling approach for aptamer biosensors. Jin F; Lian Y; Li J; Zheng J; Hu Y; Liu J; Huang J; Yang R Anal Chim Acta; 2013 Oct; 799():44-50. PubMed ID: 24091373 [TBL] [Abstract][Full Text] [Related]
2. A general excimer signaling approach for aptamer sensors. Wu C; Yan L; Wang C; Lin H; Wang C; Chen X; Yang CJ Biosens Bioelectron; 2010 Jun; 25(10):2232-7. PubMed ID: 20378328 [TBL] [Abstract][Full Text] [Related]
3. Sensitive fluorescence detection of ATP based on host-guest recognition between near-infrared β-Cyclodextrin-CuInS Hu T; Na W; Yan X; Su X Talanta; 2017 Apr; 165():194-200. PubMed ID: 28153242 [TBL] [Abstract][Full Text] [Related]
4. Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules. Zhao Q; Cheng L Anal Bioanal Chem; 2013 Oct; 405(25):8233-9. PubMed ID: 23912830 [TBL] [Abstract][Full Text] [Related]
5. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. Cui L; Zou Y; Lin N; Zhu Z; Jenkins G; Yang CJ Anal Chem; 2012 Jul; 84(13):5535-41. PubMed ID: 22686244 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic cleavage and mass amplification strategy for small molecule detection using aptamer-based fluorescence polarization biosensor. Kang L; Yang B; Zhang X; Cui L; Meng H; Mei L; Wu C; Ren S; Tan W Anal Chim Acta; 2015 Jun; 879():91-6. PubMed ID: 26002482 [TBL] [Abstract][Full Text] [Related]
7. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification. Xu Y; Xu J; Xiang Y; Yuan R; Chai Y Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161 [TBL] [Abstract][Full Text] [Related]
8. An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon. Shi C; Gu H; Ma C Anal Biochem; 2010 May; 400(1):99-102. PubMed ID: 20056100 [TBL] [Abstract][Full Text] [Related]
9. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer. Li Z; Wang Y; Liu Y; Zeng Y; Huang A; Peng N; Liu X; Liu J Analyst; 2013 Sep; 138(17):4732-6. PubMed ID: 23814782 [TBL] [Abstract][Full Text] [Related]
10. A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR Green I dye. Kong L; Xu J; Xu Y; Xiang Y; Yuan R; Chai Y Biosens Bioelectron; 2013 Apr; 42():193-7. PubMed ID: 23202351 [TBL] [Abstract][Full Text] [Related]
11. A Sensitive Fluorescent Assay for Tetracycline Detection Based on Triple-helix Aptamer Probe and Cyclodextrin Supramolecular Inclusion. He H; Xie C; Yao L; Ning G; Wang Y J Fluoresc; 2021 Jan; 31(1):63-71. PubMed ID: 33070269 [TBL] [Abstract][Full Text] [Related]
12. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448 [TBL] [Abstract][Full Text] [Related]
13. Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum. Zhang Q; Deng T; Li J; Xu W; Shen G; Yu R Biosens Bioelectron; 2015 Jun; 68():253-258. PubMed ID: 25590970 [TBL] [Abstract][Full Text] [Related]
14. New probe design strategy by cooperation of metal/DNA-ligation and supermolecule inclusion interaction: application to detection of mercury ions(II). Gao X; Deng T; Li J; Yang R; Shen G; Yu R Analyst; 2013 May; 138(9):2755-60. PubMed ID: 23527376 [TBL] [Abstract][Full Text] [Related]
15. Competitive fluorescence anisotropy/polarization assay for ATP using aptamer as affinity ligand and dye-labeled ATP as fluorescence tracer. Li Y; Sun L; Zhao Q Talanta; 2017 Nov; 174():7-13. PubMed ID: 28738645 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate. Song W; Zhang Q; Xie X; Zhang S Biosens Bioelectron; 2014 Nov; 61():51-6. PubMed ID: 24851721 [TBL] [Abstract][Full Text] [Related]
17. Low background signal platform for the detection of ATP: when a molecular aptamer beacon meets graphene oxide. He Y; Wang ZG; Tang HW; Pang DW Biosens Bioelectron; 2011 Nov; 29(1):76-81. PubMed ID: 21889887 [TBL] [Abstract][Full Text] [Related]
18. Target-induced conjunction of split aptamer fragments and assembly with a water-soluble conjugated polymer for improved protein detection. Liu X; Shi L; Hua X; Huang Y; Su S; Fan Q; Wang L; Huang W ACS Appl Mater Interfaces; 2014 Mar; 6(5):3406-12. PubMed ID: 24512085 [TBL] [Abstract][Full Text] [Related]
19. Identification of allosteric nucleotide sites of tetramethylrhodamine-labeled aptamer for noncompetitive aptamer-based fluorescence anisotropy detection of a small molecule, ochratoxin A. Zhao Q; Lv Q; Wang H Anal Chem; 2014 Jan; 86(2):1238-45. PubMed ID: 24354298 [TBL] [Abstract][Full Text] [Related]
20. Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides. Zhao Q; Lv Q; Wang H Biosens Bioelectron; 2015 Aug; 70():188-93. PubMed ID: 25814408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]