These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24091379)

  • 1. Growth of carbon nanotubes via twisted graphene nanoribbons.
    Lim HE; Miyata Y; Kitaura R; Nishimura Y; Nishimoto Y; Irle S; Warner JH; Kataura H; Shinohara H
    Nat Commun; 2013; 4():2548. PubMed ID: 24091379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes.
    Zhou K; Wang L; Wang R; Wang C; Tang C
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
    Kosynkin DV; Higginbotham AL; Sinitskii A; Lomeda JR; Dimiev A; Price BK; Tour JM
    Nature; 2009 Apr; 458(7240):872-6. PubMed ID: 19370030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanoelectronics: unzipping tubes into graphene ribbons.
    Santos H; Chico L; Brey L
    Phys Rev Lett; 2009 Aug; 103(8):086801. PubMed ID: 19792746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contacting individual graphene nanoribbons using carbon nanotube electrodes.
    Zhang J; Qian L; Barin GB; Daaoub AHS; Chen P; Müllen K; Sangtarash S; Ruffieux P; Fasel R; Sadeghi H; Zhang J; Calame M; Perrin ML
    Nat Electron; 2023; 6(8):572-581. PubMed ID: 37636241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronene-Based Graphene Nanoribbons Insulated by Boron Nitride Nanotubes: Electronic Properties of the Hybrid Structure.
    Gracia-Espino E; Barzegar HR; Zettl A
    ACS Omega; 2018 Oct; 3(10):12930-12935. PubMed ID: 31458016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bottom-up growth of edge specific graphene nanoribbons.
    Nevius MS; Wang F; Mathieu C; Barrett N; Sala A; Menteş TO; Locatelli A; Conrad EH
    Nano Lett; 2014 Nov; 14(11):6080-6. PubMed ID: 25254434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B2C graphene, nanotubes, and nanoribbons.
    Wu X; Pei Y; Zeng XC
    Nano Lett; 2009 Apr; 9(4):1577-82. PubMed ID: 19281212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Films Based on Bilayer Graphene and Single-Walled Carbon Nanotubes: Simulation of Atomic Structure and Study of Electrically Conductive Properties.
    Slepchenkov MM; Barkov PV; Glukhova OE
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets.
    Carretero-González J; Castillo-Martínez E; Dias-Lima M; Acik M; Rogers DM; Sovich J; Haines CS; Lepró X; Kozlov M; Zhakidov A; Chabal Y; Baughman RH
    Adv Mater; 2012 Nov; 24(42):5695-701. PubMed ID: 22911965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D; Liu F
    Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene nanoribbon composites.
    Rafiee MA; Lu W; Thomas AV; Zandiatashbar A; Rafiee J; Tour JM; Koratkar NA
    ACS Nano; 2010 Dec; 4(12):7415-20. PubMed ID: 21080652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.