These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24091379)

  • 21. Large-scale solution synthesis of narrow graphene nanoribbons.
    Vo TH; Shekhirev M; Kunkel DA; Morton MD; Berglund E; Kong L; Wilson PM; Dowben PA; Enders A; Sinitskii A
    Nat Commun; 2014; 5():3189. PubMed ID: 24510014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic structure and stability of semiconducting graphene nanoribbons.
    Barone V; Hod O; Scuseria GE
    Nano Lett; 2006 Dec; 6(12):2748-54. PubMed ID: 17163699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Narrow graphene nanoribbons from carbon nanotubes.
    Jiao L; Zhang L; Wang X; Diankov G; Dai H
    Nature; 2009 Apr; 458(7240):877-80. PubMed ID: 19370031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons.
    Liu X; Wang F; Wu H
    Phys Chem Chem Phys; 2015 Dec; 17(47):31911-6. PubMed ID: 26568035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars.
    Kato T; Hatakeyama R
    Nat Nanotechnol; 2012 Oct; 7(10):651-6. PubMed ID: 22961304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications.
    Yano Y; Mitoma N; Ito H; Itami K
    J Org Chem; 2020 Jan; 85(1):4-33. PubMed ID: 31789025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent progress and challenges in graphene nanoribbon synthesis.
    Ma L; Wang J; Ding F
    Chemphyschem; 2013 Jan; 14(1):47-54. PubMed ID: 22615215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile synthesis of high-quality graphene nanoribbons.
    Jiao L; Wang X; Diankov G; Wang H; Dai H
    Nat Nanotechnol; 2010 May; 5(5):321-5. PubMed ID: 20364133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature of Edge Passivation.
    Milotti V; Berkmann C; Laranjeira J; Cui W; Cao K; Zhang Y; Kaiser U; Yanagi K; Melle-Franco M; Shi L; Pichler T; Ayala P
    Small Methods; 2022 Aug; 6(8):e2200110. PubMed ID: 35733057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct oriented growth of armchair graphene nanoribbons on germanium.
    Jacobberger RM; Kiraly B; Fortin-Deschenes M; Levesque PL; McElhinny KM; Brady GJ; Rojas Delgado R; Singha Roy S; Mannix A; Lagally MG; Evans PG; Desjardins P; Martel R; Hersam MC; Guisinger NP; Arnold MS
    Nat Commun; 2015 Aug; 6():8006. PubMed ID: 26258594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of a carbon nanoribbon by spontaneous collapse of a carbon nanotube grown from a γ-Fe nanoparticle via an origami mechanism.
    Kohno H; Komine T; Hasegawa T; Niioka H; Ichikawa S
    Nanoscale; 2013 Jan; 5(2):570-3. PubMed ID: 23196743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes.
    Talyzin AV; Anoshkin IV; Krasheninnikov AV; Nieminen RM; Nasibulin AG; Jiang H; Kauppinen EI
    Nano Lett; 2011 Oct; 11(10):4352-6. PubMed ID: 21875092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrostatic deposition of graphene in a gaseous environment: a deterministic route for synthesizing rolled graphenes?
    Sidorov A; Mudd D; Sumanasekera G; Ouseph PJ; Jayanthi CS; Wu SY
    Nanotechnology; 2009 Feb; 20(5):055611. PubMed ID: 19417358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Encapsulation from the Liquid Phase and Graphene Nanoribbon Growth in Carbon Nanotubes.
    Cadena A; Botka B; Pekker Á; Tschannen CD; Lombardo C; Novotny L; Khlobystov AN; Kamarás K
    J Phys Chem Lett; 2022 Oct; 13(41):9752-9758. PubMed ID: 36223098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.
    Sokolov AN; Yap FL; Liu N; Kim K; Ci L; Johnson OB; Wang H; Vosgueritchian M; Koh AL; Chen J; Park J; Bao Z
    Nat Commun; 2013; 4():2402. PubMed ID: 23989553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Curved graphene nanoribbons: structure and dynamics of carbon nanobelts.
    Martins BV; Galvão DS
    Nanotechnology; 2010 Feb; 21(7):75710. PubMed ID: 20090201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.