These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24091394)

  • 41. Microarray data simulator for improved selection of differentially expressed genes.
    Singhal S; Kyvernitis CG; Johnson SW; Kaiser LR; Liebman MN; Albelda SM
    Cancer Biol Ther; 2003; 2(4):383-91. PubMed ID: 14508110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A top-r feature selection algorithm for microarray gene expression data.
    Sharma A; Imoto S; Miyano S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):754-64. PubMed ID: 22084149
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three methods for optimization of cross-laboratory and cross-platform microarray expression data.
    Stafford P; Brun M
    Nucleic Acids Res; 2007; 35(10):e72. PubMed ID: 17478523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular diagnosis. Classification, model selection and performance evaluation.
    Markowetz F; Spang R
    Methods Inf Med; 2005; 44(3):438-43. PubMed ID: 16113770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Classification across gene expression microarray studies.
    Buness A; Ruschhaupt M; Kuner R; Tresch A
    BMC Bioinformatics; 2009 Dec; 10():453. PubMed ID: 20042109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An optimised gene selection approach using wavelet power spectrum.
    Prabakaran S; Sahu R; Verma S
    Int J Bioinform Res Appl; 2011; 7(4):335-54. PubMed ID: 22112527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel random forests-based feature selection method for microarray expression data analysis.
    Yao D; Yang J; Zhan X; Zhan X; Xie Z
    Int J Data Min Bioinform; 2015; 13(1):84-101. PubMed ID: 26529910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Random KNN feature selection - a fast and stable alternative to Random Forests.
    Li S; Harner EJ; Adjeroh DA
    BMC Bioinformatics; 2011 Nov; 12():450. PubMed ID: 22093447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Linear regression-based feature selection for microarray data classification.
    Abid Hasan M; Hasan MK; Abdul Mottalib M
    Int J Data Min Bioinform; 2015; 11(2):167-79. PubMed ID: 26255381
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asymmetric microarray data produces gene lists highly predictive of research literature on multiple cancer types.
    Dawany NB; Tozeren A
    BMC Bioinformatics; 2010 Sep; 11():483. PubMed ID: 20875095
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Comparison of statistical methods for detecting differential expression in microarray data].
    Shan WJ; Tong CF; Shi JS
    Yi Chuan; 2008 Dec; 30(12):1640-6. PubMed ID: 19073583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Feature-specific quantile normalization and feature-specific mean-variance normalization deliver robust bi-directional classification and feature selection performance between microarray and RNAseq data.
    Skubleny D; Ghosh S; Spratlin J; Schiller DE; Rayat GR
    BMC Bioinformatics; 2024 Mar; 25(1):136. PubMed ID: 38549046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Distributed Feature Selection Algorithm Based on Distance Correlation with an Application to Microarrays.
    Brankovic A; Hosseini M; Piroddi L
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1802-1815. PubMed ID: 29993889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Empirical evaluation of consistency and accuracy of methods to detect differentially expressed genes based on microarray data.
    Yang D; Parrish RS; Brock GN
    Comput Biol Med; 2014 Mar; 46():1-10. PubMed ID: 24529200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NIM: a node influence based method for cancer classification.
    Wang Y; Yao M; Yang J
    Comput Math Methods Med; 2014; 2014():826373. PubMed ID: 25180045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Classifying temporal microarray data by selecting informative genes.
    Lou Q; Obradovic Z
    J Bioinform Comput Biol; 2013 Jun; 11(3):1341006. PubMed ID: 23796183
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Classification of microarrays; synergistic effects between normalization, gene selection and machine learning.
    Önskog J; Freyhult E; Landfors M; Rydén P; Hvidsten TR
    BMC Bioinformatics; 2011 Oct; 12():390. PubMed ID: 21982277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of differentially expressed genes by means of outlier detection.
    Irigoien I; Arenas C
    BMC Bioinformatics; 2018 Sep; 19(1):317. PubMed ID: 30200879
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Informative gene selection and direct classification of tumor based on Chi-square test of pairwise gene interactions.
    Zhang H; Li L; Luo C; Sun C; Chen Y; Dai Z; Yuan Z
    Biomed Res Int; 2014; 2014():589290. PubMed ID: 25140319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic data sampling and its effect on classification performance assessment.
    Azuaje F
    BMC Bioinformatics; 2003 Jan; 4():5. PubMed ID: 12553886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.