These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Comparison of High-Level Microarray Analysis Methods in the Context of Result Consistency. Chrominski K; Tkacz M PLoS One; 2015; 10(6):e0128845. PubMed ID: 26057385 [TBL] [Abstract][Full Text] [Related]
64. Identification of Genes Discriminating Multiple Sclerosis Patients from Controls by Adapting a Pathway Analysis Method. Zhang L; Wang L; Tian P; Tian S PLoS One; 2016; 11(11):e0165543. PubMed ID: 27846233 [TBL] [Abstract][Full Text] [Related]
65. An Epicurean learning approach to gene-expression data classification. Albrecht A; Vinterbo SA; Ohno-Machado L Artif Intell Med; 2003 May; 28(1):75-87. PubMed ID: 12850314 [TBL] [Abstract][Full Text] [Related]
66. Dimension reduction strategies for analyzing global gene expression data with a response. Chiaromonte F; Martinelli J Math Biosci; 2002 Mar; 176(1):123-44. PubMed ID: 11867087 [TBL] [Abstract][Full Text] [Related]
67. Proteomics Versus Clinical Data and Stochastic Local Search Based Feature Selection for Acute Myeloid Leukemia Patients' Classification. Chebouba L; Boughaci D; Guziolowski C J Med Syst; 2018 Jun; 42(7):129. PubMed ID: 29869179 [TBL] [Abstract][Full Text] [Related]
68. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Emmert-Streib F; Tripathi S; de Matos Simoes R Biol Direct; 2012 Dec; 7():44. PubMed ID: 23227854 [TBL] [Abstract][Full Text] [Related]
69. Identifying genes that contribute most to good classification in microarrays. Baker SG; Kramer BS BMC Bioinformatics; 2006 Sep; 7():407. PubMed ID: 16959042 [TBL] [Abstract][Full Text] [Related]
70. To select relevant features for longitudinal gene expression data by extending a pathway analysis method. Tian S; Wang C; Chang HH F1000Res; 2018; 7():1166. PubMed ID: 30271585 [TBL] [Abstract][Full Text] [Related]
71. Comparison of variable selection methods for high-dimensional survival data with competing events. Gilhodes J; Zemmour C; Ajana S; Martinez A; Delord JP; Leconte E; Boher JM; Filleron T Comput Biol Med; 2017 Dec; 91():159-167. PubMed ID: 29078093 [TBL] [Abstract][Full Text] [Related]
72. Effect of data combination on predictive modeling: a study using gene expression data. Osl M; Dreiseitl S; Kim J; Patel K; Baumgartner C; Ohno-Machado L AMIA Annu Symp Proc; 2010 Nov; 2010():567-71. PubMed ID: 21347042 [TBL] [Abstract][Full Text] [Related]
73. Weighted-SAMGSR: combining significance analysis of microarray-gene set reduction algorithm with pathway topology-based weights to select relevant genes. Tian S; Chang HH; Wang C Biol Direct; 2016 Sep; 11(1):50. PubMed ID: 27681389 [TBL] [Abstract][Full Text] [Related]
74. Comparison and evaluation of integrative methods for the analysis of multilevel omics data: a study based on simulated and experimental cancer data. Pucher BM; Zeleznik OA; Thallinger GG Brief Bioinform; 2019 Mar; 20(2):671-681. PubMed ID: 29688321 [TBL] [Abstract][Full Text] [Related]
75. Tile-Based Random Forest Analysis for Analyte Discovery in Balanced and Unbalanced GC × GC-TOFMS Data Sets. Gaida M; Cain CN; Synovec RE; Focant JF; Stefanuto PH Anal Chem; 2023 Sep; 95(36):13519-13527. PubMed ID: 37647642 [TBL] [Abstract][Full Text] [Related]
76. Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest. Ram M; Najafi A; Shakeri MT Iran J Pathol; 2017; 12(4):339-347. PubMed ID: 29563929 [TBL] [Abstract][Full Text] [Related]
77. Shifting from population-wide to personalized cancer prognosis with microarrays. Shao L; Fan X; Cheng N; Wu L; Xiong H; Fang H; Ding D; Shi L; Cheng Y; Tong W PLoS One; 2012; 7(1):e29534. PubMed ID: 22295060 [TBL] [Abstract][Full Text] [Related]
78. Selection bias in gene extraction on the basis of microarray gene-expression data. Ambroise C; McLachlan GJ Proc Natl Acad Sci U S A; 2002 May; 99(10):6562-6. PubMed ID: 11983868 [TBL] [Abstract][Full Text] [Related]
79. Robust Feature Selection Approach for Patient Classification using Gene Expression Data. Shahjaman M; Kumar N; Ahmed MS; Begum A; Islam SMS; Mollah MNH Bioinformation; 2017; 13(10):327-332. PubMed ID: 29162964 [TBL] [Abstract][Full Text] [Related]
80. Feature selection for predicting tumor metastases in microarray experiments using paired design. Tan Q; Thomassen M; Kruse TA Cancer Inform; 2007 Mar; 3():213-8. PubMed ID: 19455244 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]