These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24091467)

  • 61. The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel.
    Williams RJ; Hall TE; Glattauer V; White J; Pasic PJ; Sorensen AB; Waddington L; McLean KM; Currie PD; Hartley PG
    Biomaterials; 2011 Aug; 32(22):5304-10. PubMed ID: 21531457
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM).
    Vanier GS
    Methods Mol Biol; 2013; 1047():235-49. PubMed ID: 23943491
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Charge and sequence effects on the self-assembly and subsequent hydrogelation of Fmoc-depsipeptides.
    Nguyen MM; Eckes KM; Suggs LJ
    Soft Matter; 2014 Apr; 10(15):2693-702. PubMed ID: 24647784
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of peptide-amphiphiles possessing cellular activation sequences.
    Malkar NB; Lauer-Fields JL; Juska D; Fields GB
    Biomacromolecules; 2003; 4(3):518-28. PubMed ID: 12741765
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Amino acid building blocks for Fmoc solid-phase synthesis of peptides phosphocholinated at serine, threonine, and tyrosine.
    Albers MF; Hedberg C
    J Org Chem; 2013 Mar; 78(6):2715-9. PubMed ID: 23373758
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers.
    Accardo A; Tesauro D; Mangiapia G; Pedone C; Morelli G
    Biopolymers; 2007; 88(2):115-21. PubMed ID: 17154288
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.
    Zanuy D; Poater J; Solà M; Hamley IW; Alemán C
    Phys Chem Chem Phys; 2016 Jan; 18(2):1265-78. PubMed ID: 26659906
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tunable self-assembled peptide amphiphile nanostructures.
    Meng Q; Kou Y; Ma X; Liang Y; Guo L; Ni C; Liu K
    Langmuir; 2012 Mar; 28(11):5017-22. PubMed ID: 22352406
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A study of the dynamic interaction of surfactants with graphite and carbon nanotubes using Fmoc-amino acids as a model system.
    Li Y; Cousins BG; Ulijn RV; Kinloch IA
    Langmuir; 2009 Oct; 25(19):11760-7. PubMed ID: 19731945
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cooperative self-assembly of peptide gelators and proteins.
    Javid N; Roy S; Zelzer M; Yang Z; Sefcik J; Ulijn RV
    Biomacromolecules; 2013 Dec; 14(12):4368-76. PubMed ID: 24256076
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Incorporation of a matrix metalloproteinase-sensitive substrate into self-assembling peptides - a model for biofunctional scaffolds.
    Chau Y; Luo Y; Cheung AC; Nagai Y; Zhang S; Kobler JB; Zeitels SM; Langer R
    Biomaterials; 2008 Apr; 29(11):1713-9. PubMed ID: 18192002
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electroaddressing agarose using Fmoc-phenylalanine as a temporary scaffold.
    Liu Y; Cheng Y; Wu HC; Kim E; Ulijn RV; Rubloff GW; Bentley WE; Payne GF
    Langmuir; 2011 Jun; 27(12):7380-4. PubMed ID: 21598916
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Backbone amide linker (BAL) strategy for Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis of peptide aldehydes.
    Kappel JC; Barany G
    J Pept Sci; 2005 Sep; 11(9):525-35. PubMed ID: 16001455
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development and validation of a fluorescence method to follow the build-up of short peptide sequences on solid 2D surfaces.
    Zelzer M; Scurr DJ; Alexander MR; Ulijn RV
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):53-8. PubMed ID: 22191453
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An efficient and highly selective deprotection of N-Fmoc-alpha-amino acid and lipophilic N-Fmoc-dipeptide methyl esters with aluminium trichloride and N,N-dimethylaniline.
    Di Gioia ML; Leggio A; Le Pera A; Siciliano C; Liguori A; Sindona G
    J Pept Res; 2004 Apr; 63(4):383-7. PubMed ID: 15102056
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Solid-phase guanidinylation of peptidyl amines compatible with standard Fmoc-chemistry: formation of monosubstituted guanidines.
    Bionda N; Cudic P
    Methods Mol Biol; 2013; 1081():151-65. PubMed ID: 24014439
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fmoc-based chemical synthesis and selective binding to supercoiled DNA of the p53 C-terminal segment and its phosphorylated and acetylated derivatives.
    Teruya K; Murphy AC; Burlin T; Appella E; Mazur SJ
    J Pept Sci; 2004 Aug; 10(8):479-93. PubMed ID: 15347136
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles.
    Accardo A; Leone M; Tesauro D; Aufiero R; Bénarouche A; Cavalier JF; Longhi S; Carriere F; Rossi F
    Mol Biosyst; 2013 Jun; 9(6):1401-10. PubMed ID: 23483086
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Application of in situ silylation for improved, convenient preparation of fluorenylmethoxycarbonyl (Fmoc)-protected phosphinate amino acids.
    Li S; Whitehead JK; Hammer RP
    J Org Chem; 2007 Apr; 72(8):3116-8. PubMed ID: 17375960
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12.
    Shome A; Debnath S; Das PK
    Langmuir; 2008 Apr; 24(8):4280-8. PubMed ID: 18324868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.