These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24091706)

  • 1. Entangling mechanical motion with microwave fields.
    Palomaki TA; Teufel JD; Simmonds RW; Lehnert KW
    Science; 2013 Nov; 342(6159):710-3. PubMed ID: 24091706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stationary entangled radiation from micromechanical motion.
    Barzanjeh S; Redchenko ES; Peruzzo M; Wulf M; Lewis DP; Arnold G; Fink JM
    Nature; 2019 Jun; 570(7762):480-483. PubMed ID: 31243386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposal for entangling remote micromechanical oscillators via optical measurements.
    Børkje K; Nunnenkamp A; Girvin SM
    Phys Rev Lett; 2011 Sep; 107(12):123601. PubMed ID: 22026768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilized entanglement of massive mechanical oscillators.
    Ockeloen-Korppi CF; Damskägg E; Pirkkalainen JM; Asjad M; Clerk AA; Massel F; Woolley MJ; Sillanpää MA
    Nature; 2018 Apr; 556(7702):478-482. PubMed ID: 29695847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement-induced entanglement for excitation stored in remote atomic ensembles.
    Chou CW; de Riedmatten H; Felinto D; Polyakov SV; van Enk SJ; Kimble HJ
    Nature; 2005 Dec; 438(7069):828-32. PubMed ID: 16341008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent state transfer between itinerant microwave fields and a mechanical oscillator.
    Palomaki TA; Harlow JW; Teufel JD; Simmonds RW; Lehnert KW
    Nature; 2013 Mar; 495(7440):210-4. PubMed ID: 23486060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling of entanglement close to a quantum phase transition.
    Osterloh A; Amico L; Falci G; Fazio R
    Nature; 2002 Apr; 416(6881):608-10. PubMed ID: 11948343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopic entanglement by entanglement swapping.
    Pirandola S; Vitali D; Tombesi P; Lloyd S
    Phys Rev Lett; 2006 Oct; 97(15):150403. PubMed ID: 17155302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.
    Hosten O; Engelsen NJ; Krishnakumar R; Kasevich MA
    Nature; 2016 Jan; 529(7587):505-8. PubMed ID: 26751056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entangled mechanical oscillators.
    Jost JD; Home JP; Amini JM; Hanneke D; Ozeri R; Langer C; Bollinger JJ; Leibfried D; Wineland DJ
    Nature; 2009 Jun; 459(7247):683-5. PubMed ID: 19494911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping.
    Liu Y; Yan Z; Jia X; Xie C
    Sci Rep; 2016 May; 6():25715. PubMed ID: 27165122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Backaction Evading Measurement of Collective Mechanical Modes.
    Ockeloen-Korppi CF; Damskägg E; Pirkkalainen JM; Clerk AA; Woolley MJ; Sillanpää MA
    Phys Rev Lett; 2016 Sep; 117(14):140401. PubMed ID: 27740800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote quantum entanglement between two micromechanical oscillators.
    Riedinger R; Wallucks A; Marinković I; Löschnauer C; Aspelmeyer M; Hong S; Gröblacher S
    Nature; 2018 Apr; 556(7702):473-477. PubMed ID: 29695844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum back-action-evading measurement of motion in a negative mass reference frame.
    Møller CB; Thomas RA; Vasilakis G; Zeuthen E; Tsaturyan Y; Balabas M; Jensen K; Schliesser A; Hammerer K; Polzik ES
    Nature; 2017 Jul; 547(7662):191-195. PubMed ID: 28703182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental purification of two-atom entanglement.
    Reichle R; Leibfried D; Knill E; Britton J; Blakestad RB; Jost JD; Langer C; Ozeri R; Seidelin S; Wineland DJ
    Nature; 2006 Oct; 443(7113):838-41. PubMed ID: 17051214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An elementary quantum network of entangled optical atomic clocks.
    Nichol BC; Srinivas R; Nadlinger DP; Drmota P; Main D; Araneda G; Ballance CJ; Lucas DM
    Nature; 2022 Sep; 609(7928):689-694. PubMed ID: 36071166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic quantum teleportation with atoms.
    Riebe M; Häffner H; Roos CF; Hänsel W; Benhelm J; Lancaster GP; Körber TW; Becher C; Schmidt-Kaler F; James DF; Blatt R
    Nature; 2004 Jun; 429(6993):734-7. PubMed ID: 15201903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled quantized mechanical oscillators.
    Brown KR; Ospelkaus C; Colombe Y; Wilson AC; Leibfried D; Wineland DJ
    Nature; 2011 Mar; 471(7337):196-9. PubMed ID: 21346762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.