BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 24091747)

  • 1. Cancer cell metabolism: implications for therapeutic targets.
    Jang M; Kim SS; Lee J
    Exp Mol Med; 2013 Oct; 45(10):e45. PubMed ID: 24091747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells.
    Fukushi A; Kim HD; Chang YC; Kim CH
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting cellular metabolism to improve cancer therapeutics.
    Zhao Y; Butler EB; Tan M
    Cell Death Dis; 2013 Mar; 4(3):e532. PubMed ID: 23470539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer.
    Akins NS; Nielson TC; Le HV
    Curr Top Med Chem; 2018; 18(6):494-504. PubMed ID: 29788892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment.
    Littleflower AB; Parambil ST; Antony GR; Subhadradevi L
    Biochimie; 2024 May; 220():107-121. PubMed ID: 38184121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Update on Patents Covering Agents That Interfere with the Cancer Glycolytic Cascade.
    Fortunato S; Bononi G; Granchi C; Minutolo F
    ChemMedChem; 2018 Nov; 13(21):2251-2265. PubMed ID: 30226288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?
    López-Lázaro M
    Anticancer Agents Med Chem; 2008 Apr; 8(3):305-12. PubMed ID: 18393789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolysis inhibition for anticancer treatment.
    Pelicano H; Martin DS; Xu RH; Huang P
    Oncogene; 2006 Aug; 25(34):4633-46. PubMed ID: 16892078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging metabolic targets in cancer therapy.
    Zhao Y; Liu H; Riker AI; Fodstad O; Ledoux SP; Wilson GL; Tan M
    Front Biosci (Landmark Ed); 2011 Jan; 16(5):1844-60. PubMed ID: 21196269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents.
    Sheng H; Tang W
    Recent Pat Anticancer Drug Discov; 2016; 11(3):297-308. PubMed ID: 27087655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p53 and glucose metabolism: an orchestra to be directed in cancer therapy.
    Gomes AS; Ramos H; Soares J; Saraiva L
    Pharmacol Res; 2018 May; 131():75-86. PubMed ID: 29580896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible therapeutic targets among the molecules involved in the Warburg effect in tumor cells.
    Nam SO; Yotsumoto F; Miyata K; Shirasu N; Miyamoto S; Kuroki M
    Anticancer Res; 2013 Jul; 33(7):2855-60. PubMed ID: 23780970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Warburg effect and its cancer therapeutic implications.
    Chen Z; Lu W; Garcia-Prieto C; Huang P
    J Bioenerg Biomembr; 2007 Jun; 39(3):267-74. PubMed ID: 17551814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy.
    Abdel-Wahab AF; Mahmoud W; Al-Harizy RM
    Pharmacol Res; 2019 Dec; 150():104511. PubMed ID: 31678210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor glycolysis as a target for cancer therapy: progress and prospects.
    Ganapathy-Kanniappan S; Geschwind JF
    Mol Cancer; 2013 Dec; 12():152. PubMed ID: 24298908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role of mTOR in regulating aerobic glycolysis in carcinogenesis (Review).
    Fan H; Wu Y; Yu S; Li X; Wang A; Wang S; Chen W; Lu Y
    Int J Oncol; 2021 Jan; 58(1):9-19. PubMed ID: 33367927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Pyruvate Dehydrogenase Kinase as a Therapeutic Strategy against Cancer.
    Sradhanjali S; Reddy MM
    Curr Top Med Chem; 2018; 18(6):444-453. PubMed ID: 29788890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect.
    San-Millán I; Brooks GA
    Carcinogenesis; 2017 Feb; 38(2):119-133. PubMed ID: 27993896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.