BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24092353)

  • 21. Role of cyclic nucleotides in the control of hepatic autophagy.
    Holen I; Gordon PB; Seglen PO
    Biomed Biochim Acta; 1991; 50(4-6):389-92. PubMed ID: 1666282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms controlling vascular tone in pulmonary arterial hypertension: implications for vasodilator therapy.
    Cogolludo A; Moreno L; Villamor E
    Pharmacology; 2007; 79(2):65-75. PubMed ID: 17148943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time monitoring of phosphodiesterase inhibition in intact cells.
    Herget S; Lohse MJ; Nikolaev VO
    Cell Signal; 2008 Aug; 20(8):1423-31. PubMed ID: 18467075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of pulmonary arterial hypertension, inflammatory response, and epithelium injury by dual activation of cAMP/cGMP pathway in a rat model of monocrotaline-induced pulmonary hypertension.
    Muraki Y; Naito T; Tohyama K; Shibata S; Kuniyeda K; Nio Y; Hazama M; Matsuo T
    Biosci Biotechnol Biochem; 2019 Jun; 83(6):1000-1010. PubMed ID: 30835622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphodiesterase inhibition by a gastroprotective agent irsogladine: preferential blockade of cAMP hydrolysis.
    Kyoi T; Oka M; Noda K; Ukai Y
    Life Sci; 2004 Aug; 75(15):1833-42. PubMed ID: 15302227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphodiesterase activity in intrapulmonary arteries and veins of perinatal lambs.
    Okogbule-Wonodi AC; Ibe BO; Yue BW; Hsu S; Raj JU
    Mol Genet Metab; 1998 Nov; 65(3):229-37. PubMed ID: 9851888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic nucleotide phosphodiesterases (PDEs) in human osteoblastic cells; the effect of PDE inhibition on cAMP accumulation.
    Ahlström M; Pekkinen M; Huttunen M; Lamberg-Allardt C
    Cell Mol Biol Lett; 2005; 10(2):305-19. PubMed ID: 16010295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. cGMP-cAMP interplay in cardiac myocytes: a local affair with far-reaching consequences for heart function.
    Stangherlin A; Zaccolo M
    Biochem Soc Trans; 2012 Feb; 40(1):11-4. PubMed ID: 22260658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3.
    Beierwaltes WH
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1376-81. PubMed ID: 16449359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple cyclic nucleotide phosphodiesterases in human trabecular meshwork cells.
    Zhou L; Thompson WJ; Potter DE
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1745-52. PubMed ID: 10393044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seven Dictyostelium discoideum phosphodiesterases degrade three pools of cAMP and cGMP.
    Bader S; Kortholt A; Van Haastert PJ
    Biochem J; 2007 Feb; 402(1):153-61. PubMed ID: 17040207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efflux of cyclic adenosine monophosphate from cells: mechanisms and physiological implications.
    Orlov SN; Maksimova NV
    Biochemistry (Mosc); 1999 Feb; 64(2):127-35. PubMed ID: 10187903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of protease-activated receptor (PAR) 1 and PAR4 signaling in human platelets by compartmentalized cyclic nucleotide actions.
    Bilodeau ML; Hamm HE
    J Pharmacol Exp Ther; 2007 Aug; 322(2):778-88. PubMed ID: 17525299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alterations of pulmonary vascular resistance and pulmonary cyclic nucleotide metabolism in the hypoxic pig.
    Kaukel E; Beier W; Lanser K; Sill V
    Basic Res Cardiol; 1977; 72(5):444-53. PubMed ID: 201240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging therapies for pulmonary arterial hypertension.
    Ali O; Wharton J; Gibbs JS; Howard L; Wilkins MR
    Expert Opin Investig Drugs; 2007 Jun; 16(6):803-18. PubMed ID: 17501693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic nucleotide signalling in malaria parasites.
    Baker DA; Drought LG; Flueck C; Nofal SD; Patel A; Penzo M; Walker EM
    Open Biol; 2017 Dec; 7(12):. PubMed ID: 29263246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic nucleotide imaging and cardiovascular disease.
    Berisha F; Nikolaev VO
    Pharmacol Ther; 2017 Jul; 175():107-115. PubMed ID: 28216026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes.
    Sager G; Smaglyukova N; Fuskevaag OM
    J Cell Physiol; 2018 Aug; 233(8):5972-5980. PubMed ID: 29244191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - A missed opportunity.
    Perez DR; Sklar LA; Chigaev A; Matlawska-Wasowska K
    Semin Cancer Biol; 2021 Jan; 68():199-208. PubMed ID: 32044470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular efflux of cAMP and cGMP - a question about selectivity.
    Sager G; Ravna AW
    Mini Rev Med Chem; 2009 Jul; 9(8):1009-13. PubMed ID: 19601896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.