These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 24092409)

  • 1. A new protein-protein interaction sensor based on tripartite split-GFP association.
    Cabantous S; Nguyen HB; Pedelacq JD; Koraïchi F; Chaudhary A; Ganguly K; Lockard MA; Favre G; Terwilliger TC; Waldo GS
    Sci Rep; 2013 Oct; 3():2854. PubMed ID: 24092409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Protein-Protein Interaction Assays Using Tripartite Split-GFP Complementation.
    Pedelacq JD; Waldo GS; Cabantous S
    Methods Mol Biol; 2019; 2025():423-437. PubMed ID: 31267465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Organization of the Poxvirus Multicomponent Entry-Fusion Complex from Proximity Analyses in Living Infected Cells.
    Schin AM; Diesterbeck US; Moss B
    J Virol; 2021 Jul; 95(16):e0085221. PubMed ID: 34076488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling production of GFP1-10 detector protein in E. coli for secretion screening by split GFP assay.
    Müller C; Igwe CL; Wiechert W; Oldiges M
    Microb Cell Fact; 2021 Sep; 20(1):191. PubMed ID: 34592997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Isolation of Soluble Protein Domains Using a Bipartite Split-GFP Complementation System.
    Massemin A; Cabantous S; Waldo GS; Pedelacq JD
    Methods Mol Biol; 2019; 2025():321-333. PubMed ID: 31267460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo and in vitro protein solubility assays using split GFP.
    Cabantous S; Waldo GS
    Nat Methods; 2006 Oct; 3(10):845-54. PubMed ID: 16990817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein.
    Cabantous S; Terwilliger TC; Waldo GS
    Nat Biotechnol; 2005 Jan; 23(1):102-7. PubMed ID: 15580262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.
    Paulmurugan R; Gambhir SS
    Cancer Res; 2005 Aug; 65(16):7413-20. PubMed ID: 16103094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Split-GFP Reassembly Assay to Study Myogenesis and Myofusion In Vitro.
    Kodaka M; Xu X; Yang Z; Maruyama J; Hata Y
    Methods Mol Biol; 2017; 1668():127-134. PubMed ID: 28842906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association.
    Liu TY; Chou WC; Chen WY; Chu CY; Dai CY; Wu PY
    Plant J; 2018 May; 94(3):426-438. PubMed ID: 29451720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transpeptidation-Mediated Assembly of Tripartite Split Green Fluorescent Protein for Label-Free Assay of Sortase Activity.
    Zhang J; Wang M; Tang R; Liu Y; Lei C; Huang Y; Nie Z; Yao S
    Anal Chem; 2018 Mar; 90(5):3245-3252. PubMed ID: 29436229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitating chromophore formation of engineered Ca(2+) binding green fluorescent proteins.
    Holder AN; Ellis AL; Zou J; Chen N; Yang JJ
    Arch Biochem Biophys; 2009 Jun; 486(1):27-34. PubMed ID: 19358822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and characterization of a superfolder green fluorescent protein.
    Pédelacq JD; Cabantous S; Tran T; Terwilliger TC; Waldo GS
    Nat Biotechnol; 2006 Jan; 24(1):79-88. PubMed ID: 16369541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Split-GFP Gateway Cloning System for Topology Analyses of Membrane Proteins in Plants.
    Xie W; Nielsen ME; Pedersen C; Thordal-Christensen H
    PLoS One; 2017; 12(1):e0170118. PubMed ID: 28085941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Split green fluorescent protein as a tool to study infection with a plant pathogen, Cauliflower mosaic virus.
    Dáder B; Burckbuchler M; Macia JL; Alcon C; Curie C; Gargani D; Zhou JS; Ng JCK; Brault V; Drucker M
    PLoS One; 2019; 14(3):e0213087. PubMed ID: 30840696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P element transposase.
    Sabogal A; Rio DC
    Protein Sci; 2010 Nov; 19(11):2210-8. PubMed ID: 20842711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative in vivo solubility and reconstitution of truncated circular permutants of green fluorescent protein.
    Huang YM; Nayak S; Bystroff C
    Protein Sci; 2011 Nov; 20(11):1775-80. PubMed ID: 21910151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence protein complementation in microscopy: applications beyond detecting bi-molecular interactions.
    Avilov SV; Aleksandrova N
    Methods Appl Fluoresc; 2018 Nov; 7(1):012001. PubMed ID: 30457122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay.
    Armstrong CR; Senes A
    Biochim Biophys Acta; 2016 Nov; 1858(11):2573-2583. PubMed ID: 27453198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells.
    Kodaka M; Yang Z; Nakagawa K; Maruyama J; Xu X; Sarkar A; Ichimura A; Nasu Y; Ozawa T; Iwasa H; Ishigami-Yuasa M; Ito S; Kagechika H; Hata Y
    Exp Cell Res; 2015 Aug; 336(2):171-81. PubMed ID: 26116467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.