BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24092691)

  • 1. The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling.
    Siegler JC; Marshall PW; Raftry S; Brooks C; Dowswell B; Romero R; Green S
    J Appl Physiol (1985); 2013 Dec; 115(11):1634-40. PubMed ID: 24092691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise.
    Siegler JC; Mudie K; Marshall P
    Exp Physiol; 2016 Nov; 101(11):1383-1391. PubMed ID: 27634487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction.
    Hunter AM; De Vito G; Bolger C; Mullany H; Galloway SD
    J Sports Sci; 2009 Oct; 27(12):1261-9. PubMed ID: 19787544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of metabolic alkalosis on central and peripheral mechanisms associated with exercise-induced muscle fatigue in humans.
    Siegler JC; Marshall P
    Exp Physiol; 2015 Apr; 100(5):519-30. PubMed ID: 25727892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ingestion of Sodium Bicarbonate (NaHCO
    Gough LA; Rimmer S; Osler CJ; Higgins MF
    Int J Sport Nutr Exerc Metab; 2017 Oct; 27(5):429-438. PubMed ID: 28530505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of sodium bicarbonate and pyridoxine-alpha-ketoglutarate on short-term maximal exercise capacity.
    Linderman J; Kirk L; Musselman J; Dolinar B; Fahey TD
    J Sports Sci; 1992 Jun; 10(3):243-53. PubMed ID: 1318390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pre-exercise alkalosis on the decrease in VO2 at the end of all-out exercise.
    Thomas C; Delfour-Peyrethon R; Bishop DJ; Perrey S; Leprêtre PM; Dorel S; Hanon C
    Eur J Appl Physiol; 2016 Jan; 116(1):85-95. PubMed ID: 26297325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated bouts of sprint running after induced alkalosis.
    Gaitanos GC; Nevill ME; Brooks S; Williams C
    J Sports Sci; 1991; 9(4):355-70. PubMed ID: 1664869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise.
    Hollidge-Horvat MG; Parolin ML; Wong D; Jones NL; Heigenhauser GJ
    Am J Physiol Endocrinol Metab; 2000 Feb; 278(2):E316-29. PubMed ID: 10662717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximal work production following two levels of artificially induced metabolic alkalosis.
    McKenzie DC; Coutts KD; Stirling DR; Hoeben HH; Kuzara G
    J Sports Sci; 1986; 4(1):35-8. PubMed ID: 3735482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effect of metabolic alkalosis and hypoxia on high-intensity cycling performance.
    Flinn S; Herbert K; Graham K; Siegler JC
    J Strength Cond Res; 2014 Oct; 28(10):2852-8. PubMed ID: 24983849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NaHCO3-induced alkalosis reduces the phosphocreatine slow component during heavy-intensity forearm exercise.
    Forbes SC; Raymer GH; Kowalchuk JM; Marsh GD
    J Appl Physiol (1985); 2005 Nov; 99(5):1668-75. PubMed ID: 16002768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic alkalosis, recovery and sprint performance.
    Siegler JC; McNaughton LR; Midgley AW; Keatley S; Hillman A
    Int J Sports Med; 2010 Nov; 31(11):797-802. PubMed ID: 20703975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preexercise metabolic alkalosis induced via bicarbonate ingestion accelerates Vo2 kinetics at the onset of a high-power-output exercise in humans.
    Zoladz JA; Szkutnik Z; Duda K; Majerczak J; Korzeniewski B
    J Appl Physiol (1985); 2005 Mar; 98(3):895-904. PubMed ID: 15516367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise.
    Sostaric SM; Skinner SL; Brown MJ; Sangkabutra T; Medved I; Medley T; Selig SE; Fairweather I; Rutar D; McKenna MJ
    J Physiol; 2006 Jan; 570(Pt 1):185-205. PubMed ID: 16239279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions.
    Pääsuke M; Rannama L; Ereline J; Gapeyeva H; Oöpik V
    Electromyogr Clin Neurophysiol; 2007; 47(7-8):341-50. PubMed ID: 18051628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue.
    Raymer GH; Marsh GD; Kowalchuk JM; Thompson RT
    J Appl Physiol (1985); 2004 Jun; 96(6):2050-6. PubMed ID: 14766777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion.
    Cox G; Jenkins DG
    J Sports Sci; 1994 Oct; 12(5):469-75. PubMed ID: 7799476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle strength testing: evaluation of tests of explosive force production.
    Mirkov DM; Nedeljkovic A; Milanovic S; Jaric S
    Eur J Appl Physiol; 2004 Mar; 91(2-3):147-54. PubMed ID: 14523563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pH on fatigue during submaximal isometric contractions of the human calf muscle.
    Siegler JC; Marshall P; Pouslen MK; Nielsen NP; Kennedy D; Green S
    Eur J Appl Physiol; 2015 Mar; 115(3):565-77. PubMed ID: 25351788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.