BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 24092739)

  • 1. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation.
    Li H; Song Z; Zhang X; Huang Y; Li S; Mao Y; Ploehn HJ; Bao Y; Yu M
    Science; 2013 Oct; 342(6154):95-8. PubMed ID: 24092739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes.
    Hu Y; Wei J; Liang Y; Zhang H; Zhang X; Shen W; Wang H
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2048-52. PubMed ID: 26710246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance CO2-philic graphene oxide membranes under wet-conditions.
    Kim HW; Yoon HW; Yoo BM; Park JS; Gleason KL; Freeman BD; Park HB
    Chem Commun (Camb); 2014 Nov; 50(88):13563-6. PubMed ID: 25243726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving.
    Shen J; Liu G; Huang K; Chu Z; Jin W; Xu N
    ACS Nano; 2016 Mar; 10(3):3398-409. PubMed ID: 26866661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes.
    Puspasari T; Yu H; Peinemann KV
    ChemSusChem; 2016 Oct; 9(20):2908-2911. PubMed ID: 27572738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin metal-organic framework membrane production by gel-vapour deposition.
    Li W; Su P; Li Z; Xu Z; Wang F; Ou H; Zhang J; Zhang G; Zeng E
    Nat Commun; 2017 Sep; 8(1):406. PubMed ID: 28864827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A uniformly oriented MFI membrane for improved CO₂ separation.
    Zhou M; Korelskiy D; Ye P; Grahn M; Hedlund J
    Angew Chem Int Ed Engl; 2014 Mar; 53(13):3492-5. PubMed ID: 24590761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity.
    Huang A; Liu Q; Wang N; Zhu Y; Caro J
    J Am Chem Soc; 2014 Oct; 136(42):14686-9. PubMed ID: 25290574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO
    Zhou F; Tien HN; Xu WL; Chen JT; Liu Q; Hicks E; Fathizadeh M; Li S; Yu M
    Nat Commun; 2017 Dec; 8(1):2107. PubMed ID: 29235466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation.
    Deng C; Zhang QG; Han GL; Gong Y; Zhu AM; Liu QL
    Nanoscale; 2013 Nov; 5(22):11028-34. PubMed ID: 24072040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals.
    Wang X; Chi C; Tao J; Peng Y; Ying S; Qian Y; Dong J; Hu Z; Gu Y; Zhao D
    Chem Commun (Camb); 2016 Jun; 52(52):8087-90. PubMed ID: 27181340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation.
    Ying Y; Ying W; Guo Y; Peng X
    Nanotechnology; 2018 Apr; 29(15):155602. PubMed ID: 29406311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembly: A Facile Way of Forming Ultrathin, High-Performance Graphene Oxide Membranes for Water Purification.
    Xu WL; Fang C; Zhou F; Song Z; Liu Q; Qiao R; Yu M
    Nano Lett; 2017 May; 17(5):2928-2933. PubMed ID: 28388082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.
    Peng Y; Li Y; Ban Y; Jin H; Jiao W; Liu X; Yang W
    Science; 2014 Dec; 346(6215):1356-9. PubMed ID: 25504718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture.
    Shen J; Liu G; Huang K; Jin W; Lee KR; Xu N
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):578-82. PubMed ID: 25378197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superpermeable Atomic-Thin Graphene Membranes with High Selectivity.
    Wei G; Quan X; Chen S; Yu H
    ACS Nano; 2017 Feb; 11(2):1920-1926. PubMed ID: 28169524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes.
    Chen X; Zhang S; Hou D; Duan H; Deng B; Zeng Z; Liu B; Sun L; Song R; Du J; Gao P; Peng H; Liu Z; Wang L
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34133124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.