These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 24092739)

  • 1. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation.
    Li H; Song Z; Zhang X; Huang Y; Li S; Mao Y; Ploehn HJ; Bao Y; Yu M
    Science; 2013 Oct; 342(6154):95-8. PubMed ID: 24092739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes.
    Hu Y; Wei J; Liang Y; Zhang H; Zhang X; Shen W; Wang H
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2048-52. PubMed ID: 26710246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance CO2-philic graphene oxide membranes under wet-conditions.
    Kim HW; Yoon HW; Yoo BM; Park JS; Gleason KL; Freeman BD; Park HB
    Chem Commun (Camb); 2014 Nov; 50(88):13563-6. PubMed ID: 25243726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving.
    Shen J; Liu G; Huang K; Chu Z; Jin W; Xu N
    ACS Nano; 2016 Mar; 10(3):3398-409. PubMed ID: 26866661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes.
    Puspasari T; Yu H; Peinemann KV
    ChemSusChem; 2016 Oct; 9(20):2908-2911. PubMed ID: 27572738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin metal-organic framework membrane production by gel-vapour deposition.
    Li W; Su P; Li Z; Xu Z; Wang F; Ou H; Zhang J; Zhang G; Zeng E
    Nat Commun; 2017 Sep; 8(1):406. PubMed ID: 28864827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A uniformly oriented MFI membrane for improved CO₂ separation.
    Zhou M; Korelskiy D; Ye P; Grahn M; Hedlund J
    Angew Chem Int Ed Engl; 2014 Mar; 53(13):3492-5. PubMed ID: 24590761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity.
    Huang A; Liu Q; Wang N; Zhu Y; Caro J
    J Am Chem Soc; 2014 Oct; 136(42):14686-9. PubMed ID: 25290574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO
    Zhou F; Tien HN; Xu WL; Chen JT; Liu Q; Hicks E; Fathizadeh M; Li S; Yu M
    Nat Commun; 2017 Dec; 8(1):2107. PubMed ID: 29235466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation.
    Deng C; Zhang QG; Han GL; Gong Y; Zhu AM; Liu QL
    Nanoscale; 2013 Nov; 5(22):11028-34. PubMed ID: 24072040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals.
    Wang X; Chi C; Tao J; Peng Y; Ying S; Qian Y; Dong J; Hu Z; Gu Y; Zhao D
    Chem Commun (Camb); 2016 Jun; 52(52):8087-90. PubMed ID: 27181340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation.
    Ying Y; Ying W; Guo Y; Peng X
    Nanotechnology; 2018 Apr; 29(15):155602. PubMed ID: 29406311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembly: A Facile Way of Forming Ultrathin, High-Performance Graphene Oxide Membranes for Water Purification.
    Xu WL; Fang C; Zhou F; Song Z; Liu Q; Qiao R; Yu M
    Nano Lett; 2017 May; 17(5):2928-2933. PubMed ID: 28388082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.
    Peng Y; Li Y; Ban Y; Jin H; Jiao W; Liu X; Yang W
    Science; 2014 Dec; 346(6215):1356-9. PubMed ID: 25504718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture.
    Shen J; Liu G; Huang K; Jin W; Lee KR; Xu N
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):578-82. PubMed ID: 25378197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superpermeable Atomic-Thin Graphene Membranes with High Selectivity.
    Wei G; Quan X; Chen S; Yu H
    ACS Nano; 2017 Feb; 11(2):1920-1926. PubMed ID: 28169524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes.
    Chen X; Zhang S; Hou D; Duan H; Deng B; Zeng Z; Liu B; Sun L; Song R; Du J; Gao P; Peng H; Liu Z; Wang L
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34133124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.