These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 24092755)
1. Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. Villa N; Do A; Hershey JW; Fraser CS J Biol Chem; 2013 Nov; 288(46):32932-40. PubMed ID: 24092755 [TBL] [Abstract][Full Text] [Related]
2. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. Villa N; Fraser CS J Biol Chem; 2024 May; 300(5):107242. PubMed ID: 38569933 [TBL] [Abstract][Full Text] [Related]
3. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. LeFebvre AK; Korneeva NL; Trutschl M; Cvek U; Duzan RD; Bradley CA; Hershey JW; Rhoads RE J Biol Chem; 2006 Aug; 281(32):22917-32. PubMed ID: 16766523 [TBL] [Abstract][Full Text] [Related]
4. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648 [TBL] [Abstract][Full Text] [Related]
5. Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e. Walsh D; Mohr I Genes Dev; 2014 Apr; 28(8):835-40. PubMed ID: 24736843 [TBL] [Abstract][Full Text] [Related]
6. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. Villa N; Fraser CS bioRxiv; 2023 Sep; ():. PubMed ID: 37808713 [TBL] [Abstract][Full Text] [Related]
7. Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1. Korneeva NL; Lamphear BJ; Hennigan FL; Rhoads RE J Biol Chem; 2000 Dec; 275(52):41369-76. PubMed ID: 11022043 [TBL] [Abstract][Full Text] [Related]
8. Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Martineau Y; Derry MC; Wang X; Yanagiya A; Berlanga JJ; Shyu AB; Imataka H; Gehring K; Sonenberg N Mol Cell Biol; 2008 Nov; 28(21):6658-67. PubMed ID: 18725400 [TBL] [Abstract][Full Text] [Related]
9. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549 [TBL] [Abstract][Full Text] [Related]
10. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Hashem Y; des Georges A; Dhote V; Langlois R; Liao HY; Grassucci RA; Pestova TV; Hellen CU; Frank J Nature; 2013 Nov; 503(7477):539-43. PubMed ID: 24185006 [TBL] [Abstract][Full Text] [Related]
11. Ribosomal RACK1:Protein Kinase C βII Modulates Intramolecular Interactions between Unstructured Regions of Eukaryotic Initiation Factor 4G (eIF4G) That Control eIF4E and eIF3 Binding. Dobrikov MI; Dobrikova EY; Gromeier M Mol Cell Biol; 2018 Oct; 38(19):. PubMed ID: 30012864 [TBL] [Abstract][Full Text] [Related]
12. The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase. Watanabe R; Murai MJ; Singh CR; Fox S; Ii M; Asano K J Biol Chem; 2010 Jul; 285(29):21922-33. PubMed ID: 20463023 [TBL] [Abstract][Full Text] [Related]
13. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. Lamphear BJ; Kirchweger R; Skern T; Rhoads RE J Biol Chem; 1995 Sep; 270(37):21975-83. PubMed ID: 7665619 [TBL] [Abstract][Full Text] [Related]
14. The 5'-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mitchell SF; Walker SE; Algire MA; Park EH; Hinnebusch AG; Lorsch JR Mol Cell; 2010 Sep; 39(6):950-62. PubMed ID: 20864040 [TBL] [Abstract][Full Text] [Related]
15. The histone 3'-terminal stem-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3. Ling J; Morley SJ; Pain VM; Marzluff WF; Gallie DR Mol Cell Biol; 2002 Nov; 22(22):7853-67. PubMed ID: 12391154 [TBL] [Abstract][Full Text] [Related]
18. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus. Asnani M; Pestova TV; Hellen CU Nucleic Acids Res; 2016 Apr; 44(7):3390-407. PubMed ID: 26873921 [TBL] [Abstract][Full Text] [Related]
19. Dynamic regulation of the translation initiation helicase complex by mitogenic signal transduction to eukaryotic translation initiation factor 4G. Dobrikov MI; Dobrikova EY; Gromeier M Mol Cell Biol; 2013 Mar; 33(5):937-46. PubMed ID: 23263986 [TBL] [Abstract][Full Text] [Related]
20. Expression of truncated eukaryotic initiation factor 3e (eIF3e) resulting from integration of mouse mammary tumor virus (MMTV) causes a shift from cap-dependent to cap-independent translation. Chiluiza D; Bargo S; Callahan R; Rhoads RE J Biol Chem; 2011 Sep; 286(36):31288-96. PubMed ID: 21737453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]