BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24093154)

  • 1. Identifying reaction modules in metabolic pathways: bioinformatic deduction and experimental validation of a new putative route in purine catabolism.
    Barba M; Dutoit R; Legrain C; Labedan B
    BMC Syst Biol; 2013 Oct; 7():99. PubMed ID: 24093154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene context analysis reveals functional divergence between hypothetically equivalent enzymes of the purine-ureide pathway.
    Puggioni V; Dondi A; Folli C; Shin I; Rhee S; Percudani R
    Biochemistry; 2014 Feb; 53(4):735-45. PubMed ID: 24417435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aminotransferase branch point connects purine catabolism to amino acid recycling.
    Ramazzina I; Costa R; Cendron L; Berni R; Peracchi A; Zanotti G; Percudani R
    Nat Chem Biol; 2010 Nov; 6(11):801-6. PubMed ID: 20852637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice.
    Werner AK; Medina-Escobar N; Zulawski M; Sparkes IA; Cao FQ; Witte CP
    Plant Physiol; 2013 Oct; 163(2):672-81. PubMed ID: 23940254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into (S)-ureidoglycine aminohydrolase, key enzyme of purine catabolism in Arabidopsis thaliana.
    Shin I; Percudani R; Rhee S
    J Biol Chem; 2012 May; 287(22):18796-805. PubMed ID: 22493446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins of specificity and promiscuity in metabolic networks.
    Carbonell P; Lecointre G; Faulon JL
    J Biol Chem; 2011 Dec; 286(51):43994-44004. PubMed ID: 22052908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria.
    Serventi F; Ramazzina I; Lamberto I; Puggioni V; Gatti R; Percudani R
    ACS Chem Biol; 2010 Feb; 5(2):203-14. PubMed ID: 20038185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of purines on the formation of two enzymes involved in purine biosynthesis.
    LEVIN AP; MAGASANIK B
    J Biol Chem; 1961 Jan; 236():184-8. PubMed ID: 13761395
    [No Abstract]   [Full Text] [Related]  

  • 10. Hydrolytic degradation of purine derivatives to glycine.
    LINDSAY RH; PAIK WK; COHEN PP
    Biochim Biophys Acta; 1962 Apr; 58():585-7. PubMed ID: 14465538
    [No Abstract]   [Full Text] [Related]  

  • 11. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines.
    Vázquez-Salazar A; Becerra A; Lazcano A
    PLoS One; 2018; 13(4):e0196349. PubMed ID: 29698445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells.
    Tedeschi PM; Markert EK; Gounder M; Lin H; Dvorzhinski D; Dolfi SC; Chan LL; Qiu J; DiPaola RS; Hirshfield KM; Boros LG; Bertino JR; Oltvai ZN; Vazquez A
    Cell Death Dis; 2013 Oct; 4(10):e877. PubMed ID: 24157871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine and glycine metabolism by purinolytic clostridia.
    Dürre P; Andreesen JR
    J Bacteriol; 1983 Apr; 154(1):192-9. PubMed ID: 6833177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pediatric neurological syndromes and inborn errors of purine metabolism.
    Camici M; Micheli V; Ipata PL; Tozzi MG
    Neurochem Int; 2010 Feb; 56(3):367-78. PubMed ID: 20005278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of cyclic amidohydrolases: a highly diversified superfamily.
    Barba M; Glansdorff N; Labedan B
    J Mol Evol; 2013 Sep; 77(3):70-80. PubMed ID: 23979262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage.
    Xi H; Schneider BL; Reitzer L
    J Bacteriol; 2000 Oct; 182(19):5332-41. PubMed ID: 10986234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional modularity of proteins in the de novo purine biosynthetic pathway.
    Li H; Fast W; Benkovic SJ
    Protein Sci; 2009 May; 18(5):881-92. PubMed ID: 19384989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrimidine nucleotide synthesis in the rat kidney in early diabetes.
    Kunjara S; Sochor M; Ali M; Drake A; Greenbaum AL; McLean P
    Biochem Med Metab Biol; 1991 Oct; 46(2):215-25. PubMed ID: 1723607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine catabolism in molybdenum deficiency.
    RICHERT DA; BLOOM RJ; WESTERFELD WW
    J Biol Chem; 1957 Jul; 227(1):523-31. PubMed ID: 13449093
    [No Abstract]   [Full Text] [Related]  

  • 20. Functional annotation of putative fadE9 of Mycobacterium tuberculosis as isobutyryl-CoA dehydrogenase involved in valine catabolism.
    Rani N; Hazra S; Singh A; Surolia A
    Int J Biol Macromol; 2019 Feb; 122():45-57. PubMed ID: 30316772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.